Difference between revisions of "User:Tohline/Apps/RotatingPolytropes"
| Line 26: | Line 26: | ||
* P. Ledoux (1945), ApJ, 102, 143 | * P. Ledoux (1945), ApJ, 102, 143 | ||
* Cowling & Newing (1949), ApJ, 109, 149 | * Cowling & Newing (1949), ApJ, 109, 149 | ||
* S. Rosseland (1949), ''The Pulsation Theory of Variable Stars'' (Clarendon Press, Oxford) | |||
* Cowling (1951), ApJ, 114, 272 | * Cowling (1951), ApJ, 114, 272 | ||
* P. Ledoux (1951), ApJ, 117, 373 | * P. Ledoux (1951), ApJ, 117, 373 | ||
| Line 61: | Line 62: | ||
</td></tr></table> | </td></tr></table> | ||
* D. Lynden-Bell (1964), ApJ, 139, 1195 | * D. Lynden-Bell (1964), ApJ, 139, 1195 | ||
* I. W. Roxburgh (1964), MNRAS, 128, 157 | |||
* [https://archive.org/details/AllerStellarStructure P. Ledoux's (1965) Chapter 10, pp. 499-574 of ''Stellar Structure''] (Aller, L. H., McLaughlin, D. B., Eds., Univ. of Chicago Press, Chicago) | * [https://archive.org/details/AllerStellarStructure P. Ledoux's (1965) Chapter 10, pp. 499-574 of ''Stellar Structure''] (Aller, L. H., McLaughlin, D. B., Eds., Univ. of Chicago Press, Chicago) | ||
* [https://archive.org/details/AllerStellarStructure L. Mestel's (1965) Chapter xx, pp. 465-xxx of ''Stellar Structure''] (Aller, L. H., McLaughlin, D. B., Eds., Univ. of Chicago Press, Chicago) | * [https://archive.org/details/AllerStellarStructure L. Mestel's (1965) Chapter xx, pp. 465-xxx of ''Stellar Structure''] (Aller, L. H., McLaughlin, D. B., Eds., Univ. of Chicago Press, Chicago) | ||
| Line 88: | Line 90: | ||
</td></tr></table> | </td></tr></table> | ||
* D. Lynden-Bell & J. P. Ostriker (1967), MNRAS (to appear) | * D. Lynden-Bell & J. P. Ostriker (1967), MNRAS (to appear) | ||
* K. Rosenkilde (1967), ApJ (to appear) | |||
* L. Rossner (1967), ApJ (to appear) | |||
==Example Equilibrium Configurations== | ==Example Equilibrium Configurations== | ||
Revision as of 23:44, 27 June 2019
Rotationally Flattened Polytropes
|
|---|
| | Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Earliest Efforts to Construct Equilibrium Configurations
The results of the following, chronologically listed research efforts have largely been summarized in the review by N. R. Lebovitz (1967).
- R. Dedekind (1860), J. Reine Angew. Math., 58, 217
- P. G. Lejeune. Dirichlet (1860), J. Reine Angel. Math., 58, 181
- G. Riemann (1860), Abhandl. Konigl. Ges. Wis. Gottingen, 9, 3 (Verlag von B. G. Teubner, Leipzig; reprinted 1953, Dover Publ., New York)
- Lord Rayleigh (1880), Proc. London Math. Soc., 9, 57
- H. Poincaré (1885), Acta Math., 7, 259
- H. Poincaré (1903), Figures d'Equilibre d'une Masse Fluide (C. Naud, Paris)
- J. H. Jeans (1919) Phil. Trans. Roy. Soc., 218, 157
- S. Chandrasekhar (1933), MNRAS, 93, 390: The equilibrium of distorted polytropes. I. The rotational problem
|
The purpose of this paper is … to extend Emden's [work] to the case of rotating gas spheres which in their non-rotating states have polytropic distributions described by the so-called Emden functions. … the gas sphere is set rotating at a constant small angular velocity <math>~\omega</math>. … we shall assume that the rotation is so slow that the configurations are only slightly oblate. |
- L. Lichtenstein (1933), Gleichgewichtsfiguren Rotierinder Flüssigkeiten (Verlag von Julius Springer, Berlin)
- V. C. A. Ferraro (1937), MNRAS, 97, 458
- Cowling (1941), MNRAS, 101, 367
- G. Randers (1942), ApJ, 95, 454
- P. Ledoux (1945), ApJ, 102, 143
- Cowling & Newing (1949), ApJ, 109, 149
- S. Rosseland (1949), The Pulsation Theory of Variable Stars (Clarendon Press, Oxford)
- Cowling (1951), ApJ, 114, 272
- P. Ledoux (1951), ApJ, 117, 373
- Dive, P. (1952), Bull. Sci. Math., 76, 38
- R. A. Lyttleton (1953), The Stability of Rotating Liquid Masses (Cambridge Univ. Press)
- W. S. Jardetzky (1958) Theories of Figures of Celestial Bodies (Interscience, New York)
- P. Ledoux (1958), Handbuch der Physik, 51, 605 (Flügge, S., Ed., Springer-Verlag, Berlin)
- P. Ledoux & Th. Walraven (1958), Handbuch der Physik, 51, 353 (Flügge, S., Ed., Springer-Verlag, Berlin)
- [ EFE Publication I ] S. Chandrasekhar (1960), J. Mathematical Analysis and Applications, 1, 240: The virial theorem in hydromagnetics
- [ EFEPublication II ] N. R. Lebovitz (1961), ApJ, 134, 500: The virial tensor and its application to self-gravitating fluids
- C. Pekeris, Z. Alterman & H. Jarosch (1961), Proc. Natl. Acad. Sci. U. S., 47, 91
- [ EFE Publication V ] S. Chandrasekhar & N. R. Lebovitz (1962a), ApJ, 135, 248: On the oscillations and the stability of rotating gaseous masses
- [ EFE Publication X ] S. Chandrasekhar & N. R. Lebovitz (1962b), ApJ, 136, 1069: On the oscillations and the stability of rotating gaseous masses. II. The homogeneous, compressible model
- [ EFE Publication XI ] S. Chandrasekhar & N. R. Lebovitz (1962c), ApJ, 136, 1082: On the oscillations and the stability of rotating gaseous masses. III. The distorted polytropes
|
If one assumes that the mass is distributed uniformly, the equilibrium configurations are the well-known Maclaurin spheroids. This paper will be devoted to finding the oscillation frequencies of the Maclaurin spheroids. |
- [ EFE Publication XII ] S. Chandrasekhar & N. R. Lebovitz (1962d), ApJ, 136, 1105: On the occurrence of multiple frequencies and beats in the β Canis Majoris stars
- P. H. Roberts & K. Stewartson (1963), ApJ, 137, 777
- P. H. Roberts (1963a), ApJ, 137, 1129: On Highly Rotating Polytropes. I.
- [ EFE Publication XIV ] S. Chandrasekhar & N. R. Lebovitz (1963), ApJ, 137, 1162: On the oscillations of the Maclaurin spheroid belonging to the third harmonics
- P. H. Roberts (1963b), ApJ, 138, 809: On Highly Rotating Polytropes. II.
- [ EFE Publication XIX ] S. Chandrasekhar (1963), ApJ, 138, 1182: The equilibrium and stability of the Roche ellipsoids
- [ EFE Publication XX ] N. R. Lebovitz (1963), ApJ, 138, 1214: On the principle of the exchange of stabilities. I. The Roche ellipsoids
- Chandrasekhar (1964a), ApJ, 139, 664
- Chandrasekhar (1964b), ApJ, 140, 417
- Chandrasekhar (1964c), ApJ, 140, 599
- [ EFE Publication XXIII ] Chandrasekhar & N. R. Lebovitz (1964), Astrophysica Norvegica, 9, 232: On the ellipsoidal figures of equilibrium of homogeneous masses — Excellent Review!
- M. Hurley & P. H. Roberts (1964), ApJ, 140, 583: On Highly Rotating Polytropes. III.
- R. A. James (1964), 140, 552: The Structure and Stability of Rotating Gas Masses
|
Structures have been determined for axially symmetric [uniformly] rotating gas masses, in the polytropic and white-dwarf cases … Physical parameters for the rotating configurations were obtained for values of n < 3, and for a range of white-dwarf configurations. The existence of forms of bifurcation of the axially symmetric series of equilibrium forms was also investigated. The white-dwarf series proved to lack such points of bifurcation, but they were found on the polytropic series for n < 0.808. |
- D. Lynden-Bell (1964), ApJ, 139, 1195
- I. W. Roxburgh (1964), MNRAS, 128, 157
- P. Ledoux's (1965) Chapter 10, pp. 499-574 of Stellar Structure (Aller, L. H., McLaughlin, D. B., Eds., Univ. of Chicago Press, Chicago)
- L. Mestel's (1965) Chapter xx, pp. 465-xxx of Stellar Structure (Aller, L. H., McLaughlin, D. B., Eds., Univ. of Chicago Press, Chicago)
- Clement (1965a), ApJ, 140, 1045
- Clement (1965b), ApJ, 142, 243
- [ EFE Publication XXV ] S. Chandrasekhar (1965), ApJ, 142, 890: The equilibrium and the stability of the Riemann ellipsoids. I [NOTE: Article not available via SAO/NASA ADS.]
- M. Hurley & P. H. Roberts (1965), ApJSuppl, 11, 95: On Highly Rotating Polytropes. IV.
- [ EFE Publication XXVII ] N. R. Lebovitz (1965), lecture notes. Inst. Ap., Cointe-Sclessin, Belgium, p. 29: The Riemann ellipsoids
- J. J. Monaghan & I. W. Roxburgh (1965), MNRAS, 131, 13: The structure of rapidly rotating polytropes
|
James attacked the problem by numerically solving the partial differential equations of the problem with the aid of an electronic computer, but even this method lead to difficulties for <math>~n \ge 3</math>. Of all the methods used so far James' is undoubtedly the most accurate, but also the most laborious. Here, results are presented for values of the polytropic index n = 1, 1.5, 2, 2.5, 3, 3.5, 4. (Apparently, uniform rotation is assumed.) … no discussion of stability is given, we assume that the polytropes become unstable at the equator before a point of bifurcation is reached. |
- [ EFE Publication XXVIII ] S. Chandrasekhar (1966), ApJ, 145, 842: The equilibrium and the stability of the Riemann ellipsoids. II
- P. G. Drazin & L. N. Howard (1966), Advan. Appl. Mech., 9, 1
- W. A. Fowler (1966), ApJ, 144, 180
- M. Hurley, P. H. Roberts & K. Wright (1966), ApJ, 143, 535: The Oscillations of Gas Spheres
- [ EFE Publication XXIX ] N. R. Lebovitz (1966), ApJ, 145, 878: On Riemann's criterion for the stability of liquid ellipsoids
- J. P. Ostriker, P. Bodenheimer & D. Lynden-Bell (1966), Phys. Rev. Letters, 17, 816: Equilibrium Models of Differentially Rotating Zero-Temperature Stars
|
… work by Roxburgh (1965, Z. Astrophys., 62, 134), Anand (1965, Proc. Natl. Acad. Sci. U.S., 54, 23), and James (1964, ApJ, 140, 552) shows that the [Chandrasekhar (1931, ApJ, 74, 81)] mass limit <math>~M_3</math> is increased by only a few percent when uniform rotation is included in the models, … In this Letter we demonstrate that white-dwarf models with masses considerably greater than <math>~M_3</math> are possible if differential rotation is allowed … models are based on the physical assumption of an axially symmetric, completely degenerate, self-gravitating fluid, in which the effects of viscosity, magnetic fields, meridional circulation, and relativistic terms in the hydrodynamical equations have been neglected. |
- D. Lynden-Bell & J. P. Ostriker (1967), MNRAS (to appear)
- K. Rosenkilde (1967), ApJ (to appear)
- L. Rossner (1967), ApJ (to appear)
Example Equilibrium Configurations
Reviews
- N. R. Lebovitz (1967), ARAA, 5, 465
Uniform Rotation
- E. A. Milne (1923), MNRAS, 83, 118: The Equilibrium of a Rotating Star
|
Apparently, only n = 3 polytropic configurations are considered. |
- H. von Zeipel (1924), MNRAS, 84, 665: The radiative equilibrium of a rotating system of gaseous masses
- H. von Zeipel (1924), MNRAS, 84, 684: The radiative equilibrium of a slightly oblate rotating star
- S. Chandrasekhar & N. R. Lebovitz (1968), ApJ, 152, 267: The Pulsations and the Dynamical Stability of Gaseous Masses in Uniform Rotation
- Article in French! J. - L. Tassoul & J. P. Ostriker (1970), Astron. Ap., 4, 423: Secular Stability of Uniformly Rotating Polytropes
- N. R. Lebovitz & G. W. Russell (1972), ApJ, 171, 103: The Pulsations of Polytropic Masses in Rapid, Uniform Rotation
- M. J. Clement (1981), ApJ, 249, 746: Normal modes of oscillation for rotating stars. I — The effect of rigid rotation on four low-order pulsations
|
In this paper, the effects of rigid rotation on four axisymmetric modes are found for several equilibrium systems including polytopes and a 15 solar-mass stellar model. Normal modes are determined by solving directly on a two-dimensional grid the linearized dynamical equations governing adiabatic oscillations … This brute force approach has many obvious dangers, all of which are realized in practice. |
- R. Caimmi (1985), Astrophysics and Space Science, 113, 125: Emden-Chandrasekhar Axisymmetric, Rigidly Rotating Polytropes. III. Determination of Equilibrium Configurations by an Improvement of Chandrasekhar's Method
Differential Rotation
- S. Chandrasekhar & N. R. Lebovitz (1962), ApJ, 136, 1082
|
The oscillations of slowly rotating polytopes are treated in this paper. The initial equilibrium configurations are constructed as in Chandrasekhar (1933). |
- TORUS! J. P. Ostriker (1964), ApJ, 140, 1067: The Equilibrium of Self-Gravitating Rings
- R. Stoeckly (1965), ApJ, 142, 208: Polytropic Models with Fast, Non-Uniform Rotation [NOTE: Article not available via SAO/NASA ADS.]
|
Models with polytropic index n = 1.5.… for the case of non-uniform rotation, no meridional currents, and axial symmetry. The angular velocity assigned … is a Gaussian function of distance from the axis. The exponential constant <math>~c</math> in this function is a parameter of non-uniformity of rotation, ranging from 0 (uniform rotation) to 1 (approximate spatial dependence of angular velocity that might arise during contraction from a uniformly rotating mass of initially homogeneous density). For <math>~c = 0</math>, a sequence of models having increasing angular momentum is known to terminate when centrifugal force balances gravitational force at the equator; this sequence contains no bifurcation point with non-axisymmetric models as does the sequence of Maclaurin spheroids with the Jacobi ellipsoids. For <math>~c \approx 1</math>, the distortion of interior equidensity contours of some models with fast rotation is shown to exceed that of the Maclaurin spheroids at their bifurcation point. In the absence of a rigorous stability investigation, this result suggests that a star with sufficiently non-uniform rotation reaches a point of bifurcation … Non-uniformity of rotation would then be an element bearing on star formation and could be a factor in double-star formation. |
- J. P. Ostriker & P. Bodenheimer (1973), ApJ, 180, 171 [Part III]: On the Oscillations and Stability of Rapidly Rotating Stellar Models. III. Zero-Viscosity Polytropic Sequences
- P. Bodenheimer & J. P. Ostriker (1973), ApJ, 180, 159 [Part VIII]
|
An explanation is given regarding the specification of various so-called <math>~n'</math> angular momentum distributions. Equilibrium models are built along the following <math>~(n, n')</math> sequences: <math>~(0, 0)</math>, <math>~(\tfrac{3}{2}, \tfrac{3}{2})</math>, <math>~(\tfrac{3}{2}, 1)</math>, <math>~(\tfrac{3}{2}, 0)</math>, <math>~(3, 0)</math>, and <math>~(3, \tfrac{3}{2})</math>. |
- J. L. Friedman & B. F. Schutz (1978), ApJ, 222, 281
- R. H. Durisen & J. N. Imamura (1981), ApJ, 243, 612
- I. Hachisu, Y. Eriguchi & D. Sugimoto (1982), Progress of Theoretical Physics, 68, 191: Rapidly Rotating Polytropes and Concave Hamburger Equilibrium
- I. Hachisu & Y. Eriguchi (1984), Astrophysics & Space Sciences, 99, 71: Fission Sequence and Equilibrium Models of Rigidity [sic] Rotating Polytropes
- J. E. Tohline, R. H. Durisen & M. McCollough (1985), ApJ, 298, 220
- R. H. Durisen, R. A. Gingold, J. E. Tohline & A. P. Boss (1986), ApJ, 305, 281
- H. A. Williams & J. E. Tohline (1987), ApJ, 315, 594
- H. A. Williams & J. E. Tohline (1988), ApJ, 334, 449
- I. Hachisu, J. E. Tohline & Y. Eriguchi (1988), ApJS, 66, 315: Fragmentation of Rapidly Rotating Gas Clouds. II. Polytropes — Clues to the Outcome of Adiabatic Collapse
- P. J. Luyten (1990), MNRAS, 245, 614
- P. J. Luyten (1991), MNRAS, 248, 256
- A. G. Aksenov (1996), Astronomy Letters, 22, 634
- B. K. Pickett, R. H. Durisen & G. A. Davis (1996), ApJ, 458, 714
- B. K. Pickett, R. H. Durisen & R. Link (1997), Icarus, 126, 243
- J. Toman, J. N. Imamura, B. K. Pickett & R. H. Durisen (1998), ApJ, 497, 370
- J. N. Imamura, R. H. Durisen & B. K. Pickett (2000), ApJ, 528, 946
- J. M. Centrella, K. C. B. New, L. L. Lowe & J. D. Brown (2001), ApJL, 550, 193
- M. Shibata, S. Karino & Y. Eriguchi (2002), MNRAS, 334, 27
- M. Saijo, T. W. Baumgarte & S. L. Shapiro (2003), ApJ, 595, 352
- M. Saijo & S. Yoshida (2006), MNRAS, 368, 1429
See Also
|
|---|
|
© 2014 - 2021 by Joel E. Tohline |
