Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
| Line 53: | Line 53: | ||
! style="background-color:lightgreen;" colspan="2"|<b><font size="+1">Equilibrium Structure</font></b> | ! style="background-color:lightgreen;" colspan="2"|<b><font size="+1">Equilibrium Structure</font></b> | ||
|- | |- | ||
! style="text-align:center; background-color: | ! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">①</font></b> <b>Detailed Force Balance</b> | ||
! style="text-align:center; background-color:lightblue" |<b><font color="maroon" size="+1">③</font></b> <b>Free-Energy Identification of Equilibria</b> | ! style="text-align:center; background-color:lightblue" |<b><font color="maroon" size="+1">③</font></b> <b>Free-Energy Identification of Equilibria</b> | ||
|- | |- | ||
| Line 127: | Line 127: | ||
</table> | </table> | ||
|- | |- | ||
! style="text-align:center; background-color: | ! style="text-align:center; background-color:#ffff99;" |<b><font color="maroon" size="+1">②</font></b> <b>Virial Equilibrium</b> | ||
|- | |- | ||
! style="vertical-align:top; text-align:left;" | | ! style="vertical-align:top; text-align:left;" | | ||
Revision as of 22:26, 25 June 2017
Spherically Symmetric Configurations Synopsis (Using Style Sheet)
|
|---|
| | Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Structure
Tabular Overview
| ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Equilibrium Structure | ||||||||||||||||
| ① Detailed Force Balance | ③ Free-Energy Identification of Equilibria | |||||||||||||||
| Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| |||||||||||||||
| ② Virial Equilibrium | ||||||||||||||||
|
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
| ||||||||||||||||
Pointers to Relevant Chapters
⓪ Background Material:
| · | Principal Governing Equations (PGEs) in most general form being considered throughout this H_Book |
|---|---|
| · | PGEs in a form that is relevant to a study of the Structure, Stability, & Dynamics of spherically symmetric systems |
| · | Supplemental relations — see, especially, barotropic equations of state |
① Detailed Force Balance:
| · | Derivation of the equation of Hydrostatic Balance, and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as Technique 1 |
|---|
② Virial Equilibrium:
| · | Formal derivation of the multi-dimensional, 2nd-order tensor virial equations |
|---|---|
| · | Scalar Virial Theorem, as appropriate for spherically symmetric configurations |
| · | Generalization of scalar virial theorem to include the bounding effects of a hot, tenuous external medium |
Stability
Tabular Overview
| Stability Analysis | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ④ Perturbation Theory | ⑦ Free-Energy Analysis of Stability | ||||||||||||||||||
|
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
| ||||||||||||||||||
| ⑤ Variational Principle | |||||||||||||||||||
|
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| |||||||||||||||||||
| ⑥ Approximation: Homologous Expansion/Contraction | |||||||||||||||||||
|
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
| |||||||||||||||||||
See Also
|
|---|
|
© 2014 - 2021 by Joel E. Tohline |
