VisTrails Home

Course: Big Data 2016

From VisTrailsWiki

(Difference between revisions)
Jump to: navigation, search
(Week 10 - March 28th: Finding similar items & Spark)
(Week 10 - March 28th: Finding similar items & Spark)
Line 106: Line 106:
* Reading:  
* Reading:  
-
**https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQLSigmod2015.pdf
+
**Spark: Cluster Computing with Working Sets by Zaharia et al. https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQLSigmod2015.pdf
**Chapter 3 [http://vgc.poly.edu/~juliana/courses/BigData2016/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]  
**Chapter 3 [http://vgc.poly.edu/~juliana/courses/BigData2016/Textbooks/ullman-book-v1.1-mining-massive-data.pdf Mining of Massive Datasets]  
** On the resemblance and containment of documents by Andrei Broder. http://www.misserpirat.dk/main/docs/00000004.pdf
** On the resemblance and containment of documents by Andrei Broder. http://www.misserpirat.dk/main/docs/00000004.pdf

Revision as of 08:19, 26 March 2016

Contents

DS-GA 1004- Big Data: Tentative Schedule -- subject to change

  • TAs:
    • Yuan Feng
    • Kevin Ye
  • Lecture: Mondays, 4:55pm-7:35pm at Silver 207
  • Some classes will include a lab session, please always bring your laptop.

News

Week 1 - Jan 25: Course Overview

Week 2 - Feb 1: The evolution of Data Management and introduction to Big Data; Introduction to Databases and Relational Model

Week 3 - Feb 8: Introduction to Databases, Relational Model and SQL (cont.)

Week 4 - Feb 15: Holiday

Transparency and Reproducibility (1 week)

Week 5 - Feb 22: Data Exploration and Reproducibility

Big Data Foundations and Infrastructure (3 weeks)

Week 6 - Feb 29: Introduction to Map Reduce

Week 7 - March 7: MapReduce Algorithm Design Patterns

Week 8-- March 14th: Spring Break

Week 9- March 21st: Parallel Databases vs MapReduce; Storage Solutions; Introduction to SPARK

Big Data Algorithms, Mining Techniques, and Visualization (6 weeks)

Week 10 - March 28th: Finding similar items & Spark

  • Homework Assignment
    • See quizzes on Gradiance -- Distance measures and document similarity.

Week 11 - April 4th: Association Rules


  • Suggested additional reading:
    • Fast algorithms for mining association rules, Agrawal and Srikant, VLDB 1994.
    • Data Mining Concepts and Techniques, Jiawei Han and Micheline Kamber, Morgan Kaufmann
    • Dynamic Itemset Counting and Implication Rules for Market Basket Data. Brin et al., SIGMOD 1997. http://www-db.stanford.edu/~sergey/dic.html
  • Homework Assignment
    • See quizes on Gradiance -- Distance measures and document similarity.

Week 12 - April 11th: Visualization and Spatio-Temporal Data -- Invited lecture by Dr. Harish Doraiswamy (NYU CDS)

Week 13 - April 18th: Data Cleaning - Invited lecture by Dr. Divesh Srivastava, AT&T Research

Week 14 - April 25th: Graph Analysis

  • Required Reading: Data-Intensive Text Processing with MapReduce. Chapters 5 -- Graph Algorithms

Week 15 - May 2: TBD

Week 16 - May 9: Final Exam

Week 17 - May 16: Project Presentations

Personal tools