AWS Setup

From VistrailsWiki
Jump to navigation Jump to search

Setting up your AWS account

Go to and sign up: You may sign in using your existing Amazon account or you can create a new account by selecting "I am a new user."

Enter your contact information and confirm your acceptance of the AWS Customer Agreement. Once you have created an Amazon Web Services Account, check your email for your confirmation step. You need Access Identifiers to make valid web service requests.

Go to and sign in. At the top of the page, click on Sign in to the AWS Management Console. You need to sign up for three of their services: Simple Storage Service (S3), Elastic Compute Cloud (EC2), and Amazon Elastic MapReduce.

Get your AWS credit code from here code assignment, the go to This gives you $100 credit towards AWS. Be aware that if you exceed it, Amazon will charge your credit card without warning. This credit should be enough for your assignments (if you are interested in their changes, see AWS charges: currently, AWS charges about 8 cents/node/hour for the default "small" node size.). However, you must remember to terminate manually the AWS cluster (called Job Flows) when you are done: if you just close the browser, the job flows continue to run, and amazon will continue to charge you for days and weeks, exhausting your credit and charging you huge amount on your credit card. Remember to terminate the AWS cluster.

Setting up an EC2 key pair


To connect to an Amazon EC2 node, such as the master nodes for the Hadoop clusters you will be creating, you need an SSH key pair. To create and install one, do the following:

After setting up your account, follow Amazon's instructions to create a key pair. Follow the instructions in section "Having AWS create the key pair for you," subsection "AWS Management Console." (Don't do this in Internet Explorer, or you might not be able to download the .pem private key file.)

Download and save the .pem private key file to disk. We will reference the .pem file as </path/to/saved/keypair/file.pem> in the following instructions.

Make sure only you can access the .pem file, just to be safe:

   $ chmod 600 </path/to/saved/keypair/file.pem>

Terminating an AWS cluster

After you are done, shut down the AWS cluster:

   Go to the Management Console.
   Select the job in the list.
   Click the Terminate button (it should be right below "Your Elastic MapReduce Job Flows").
   Wait for a while (may take minutes) and recheck until the job state becomes TERMINATED.

Pay attention to this step. If you fail to terminate your job and only close the browser, or log off AWS, your AWS will continue to run, and AWS will continue to charge you: for hours, days, weeks, and when your credit is exhausted, it charges your credit card. Make sure you don't leave the console until you have confirmation that the job is terminated.

Monitoring Hadoop Jobs

You are required in this assignment to monitor the running Hadoop jobs on your AWS cluster using the master node's job tracker Web UI. There are two ways to do this: using lynx or using your own browser with a SOCKS proxy.

Using LYNX

Very easy, you don't need to download anything. Open a separate ssh connection to the AWS master node and type:

   % lynx http://localhost:9100/

Lynx is a text browser. Navigate as follows: up/down arrows = move through the links (current link is highlighted); enter = follows a link; left arrow = return to previous page.

Examine the webpage carefully, while your program is running. You should find information about the map tasks, the reduce tasks, you should be able to drill down into each map task (for example to monitor its progress); you should be able to look at the log files of the map tasks (if there are runtime errors, you will see them only in these log files).

Using SOCKS proxy, and your own browser

This requires more work, but the nicer interface makes it worth the extra work. Set up your browser to use a proxy when connecting to the master node.

  • Firefox:

 Install the FoxyProxy extension for Firefox.
 Copy the foxyproxy.xml configuration file from the hw6/ folder into your Firefox profile folder.
 If the previous step doesn't work for you, try deleting the foxyproxy.xml you copied into your profile, and using Amazon's instructions to set up FoxyProxy manually.

  • Chrome:

 Install proxy switch!, by clicking "Add to Chrome" on the extension's page.
 After clicking the link, you should be at the ProxySwitch options page, but if not, click the Tools wrench icon (upper right corner). Go to Options, go to Extensions. Here you will see the ProxySwitch!: click on Options next to it.
 Create a new Proxy Profile: Manual Configuration, Profile name = Amazon Elastic MapReduce (any name you want), SOCKS Host = localhost, Port = 8888 (you can choose any port you want; another favorite is 8157), SOCKS v5.
 Create two new swtich rules (give them any names, say AWS1 and AWS2). Rule 1: pattern=**/*, Rule 2: pattern=*.ec2.internal:*/*. For both, Type=wildcard, Proxy profile=[the profile you created at the previous step].
 Open a new local terminal window and create the SSH SOCKS tunnel to the master node using the following:
       $ ssh -o "ServerAliveInterval 10" -i </path/to/saved/keypair/file.pem> -ND 8888 hadoop@<>
       (The -N option tells ssh not to start a shell, and the -D 8888 option tells ssh to start the proxy and have it listen on port 8888.)

The resulting SSH window will appear to hang, without any output; this is normal as SSH has not started a shell on the master node, but just created the tunnel over which proxied traffic will run.

Keep this window running in the background (minimize it) until you are finished with the proxy, then close the window to shut the proxy down. Open your browser, and type one of the following URLs:

           For the job tracker: http://<>:9100/
           For HDFS management: http://<>:9101/

Killing a Hadoop Job

From the job tracker interface find the hadoop job_id, then type:
   % hadoop job -kill job_id

Managing the results of your tasks

Copying files to or from the AWS master node

To copy one file from the master node back to your computer, run this command on the local computer:

   $ scp -o "ServerAliveInterval 10" -i </path/to/saved/keypair/file.pem> hadoop@<>:<file_path> .

where <file_path> can be absolute or relative to the AWS master node's home folder. The file should be copied onto your current directory ('.') on your local computer.

Better: copy an entire directory, recursively. Suppose your files are in the directory example-results. They type the following on your loal computer:

   $ scp -o "ServerAliveInterval 10" -i </path/to/saved/keypair/file.pem> -r hadoop@<>:example-results .

As an alternative, you may run the scp command on the AWS master node, and connect to your local machine. For that, you need to know your local machine's domain name, or IP address, and your local machine needs to accept ssh connections.

Storing Files in S3

This seems much easier to use. Go to your AWS Management Console, click on Create Bucket, and create a new bucket (=directory). Give it a name that may be a public name. Let's say you call it superman-hw6. Click on the Properties button, then Permissions tab. Make sure you have all the permissions.

In your program, you can write the results to 's3n://superman-hw6/example-results'. When the program terminates, then in your S3 console you should see the new directory example-results. Click on individual files to download. The number of files depends on the number of reduce tasks, and may vary from one to a few dozens. The only disadvantage of using S3 is that you have to click on each file separately to download.

Note that S3 is permanent storage, and you are charged for it. You can safely store all your query answers for several weeks without exceeding your credit; at some point in the future remember to delete them.

Modified from