Difference between revisions of "SciVisFall2008/Schedule"

From VistrailsWiki
Jump to navigation Jump to search
Line 66: Line 66:


Topics: Principles of Graph Construction
Topics: Principles of Graph Construction
Notes: [http://www.sci.utah.edu/~stevec/classes/cs5630/PlottingNotes.pdf PlottingNotes.pdf]
Slides: [http://www.sci.utah.edu/~stevec/slides/SciVis/Plotting1.pdf Plotting1.pdf]
Further Reading:  There is no required reading for this lecture.  For those interested in more depth, the following books are very useful:
* The Elements of Graphing Data.  William S. Cleveland, Hobart Press, 2nd Edition, 1994.
* Visualizing Data.  William S. Cleveland, Hobart Press, 1993.
* The Visual Display of Quantitative Information.  Edward R. Tufte, Graphics Press, 2001.
* Visual Explanations: Images and Quantities, Evidence and Narrative.  Edward R. Tufte, Graphics Press, 2997.


==  9/11:  Elementary Plotting Techniques ==
==  9/11:  Elementary Plotting Techniques ==

Revision as of 05:08, 16 September 2008

8/26: Introduction to visualization

Lecturer: Claudio

Topics: Scientific Visualization

Notes: lec01-notes.pdf

Slides: intro

Animations: NCSA storm animation

Further reading:

(Optional reading) Provenance for Computational Tasks: A Survey

8/28: The visualization pipeline

Lecturer: Claudio

Topics: Procedural vs. Dataflow programming; Using Dataflow for the Vis Pipeline; Dataflow programming with VTK; Dataflow programming with VisTrails; python.

Notes: lec02-notes.pdf

Slides: lec02.pdf

Further reading:

(Optional reading) Provenance for Visualizations: Reproducibility and Beyond, C. Silva, J. Freire, and S. Callahan, IEEE Computing in Science and Engineering, 2008.

9/2: Modeling Data for Visualization

Lecturer: Claudio

Topics: Discrete vs continous data; Sampling and interpolation; Point vs triangulated data; Meshing data types; Regular vs irregular data; Tabular data; Vector and tensor fields

Notes: modeling data

Slides: processing.ppt

Further reading:

Basic Signal Processing

9/4: Modeling Data for Visualization

Lecturer: Claudio

Topics: Geometry Processing: Reconstruction and meshing; Simplification; Smoothing; Other Filtering algorithms

Notes: modeling data

Slides: processing.ppt

Further reading:

http://en.wikipedia.org/wiki/Least_squares

(Optional Reading) Robust Moving Least-squares Fitting with Sharp Features

(Optional Reading) Optimal Bandwidth Selection for MLS Surfaces

9/9: Elementary Plotting Techniques

Lecturer: Claudio

Topics: Principles of Graph Construction

Notes: PlottingNotes.pdf

Slides: Plotting1.pdf

Further Reading: There is no required reading for this lecture. For those interested in more depth, the following books are very useful:

  • The Elements of Graphing Data. William S. Cleveland, Hobart Press, 2nd Edition, 1994.
  • Visualizing Data. William S. Cleveland, Hobart Press, 1993.
  • The Visual Display of Quantitative Information. Edward R. Tufte, Graphics Press, 2001.
  • Visual Explanations: Images and Quantities, Evidence and Narrative. Edward R. Tufte, Graphics Press, 2997.

9/11: Elementary Plotting Techniques

Lecturer: Claudio

Topics: Simple Plotting Methods: Dot Plots, Connected Symbol Plots, Scatter Plots, Histograms, Others. Advanced Plotting Methods: Multimodal, Higher Dimensional, Correlation, Uncertainty and Variation.

9/16: Color and Human Perception

Lecturer: Claudio

Topics: Human vision system; Optical illusions

9/18: Color and Human Perception

Lecturer: Claudio

Topics: Color Science; Color spaces; Color Blindness; Color maps; Tone mapping; 2-D contours, marching quads, marching tris; Color mapping; height fields; NPR

9/23: Math refresher

Lecturer: Claudio

Topics: Basic linear algebra; vectors; basic differential geometry (space curves, tangents, normals, surfaces); basic vector calculus (gradient, divergence, curl, gauss' theorem, green's theorem)

9/25: 2D Visualization Techniques

Lecturer: Claudio

Topics: 2-D vector fields, div, grad, curl in 2D; Steady vs Unsteady flows; Glyphs; 2-D streamlines, streaklines, pathlines

9/30: Volume Vis

Lecturer: Claudio

Topics: Slicing; Contours; Marching algorithms

10/2: Volume Vis

Lecturer: Claudio

Topics: Accelerating structures; High-quality contours

10/7: Volume Vis

Lecturer: SUB

Topics: High quality isosurfaces

10/9: Volume Vis

Lecturer: SUB

Topics: continued from last class

10/14: Fall break

10/16: Fall break

10/21: Direct Volume Rendering

Lecturer: SUB

Topics: Introduction to volume rendering

10/23: Midterm 1

10/28: Direct Volume Rendering

Lecturer: Claudio

Topics: Structured grid techniques: ray-casting, splatting, texture slicing, shear-warp

10/30: TBD

11/4: Simplification Techniques

Lecturer: Claudio

Topics: Simplification techniques: vertex clustering, vertex decimation, iterative contraction, quadric error based surface and tetrahedral simplification

11/6: Direct Volume Rendering

Lecturer: Claudio

Topics: Unstructured grid techniques

11/11: Direct Volume Rendering

Lecturer: Claudio

Topics: Transfer function specification

11/13: Tensor Visualization

Lecturer: Claudio

Topics: DT/MRI intro, glyphs, colormapping, volume rendering

11/15: 3D Vector Vis and Topology

Lecturer: Claudio

Topics: 3D techniques, critical points

11/18: Information Visualization

Lecturer: Claudio

Topics: Parallel coordinates; Graph visualization

11/20: Information Visualization

Lecturer: Claudio

Topics: Trees and Graphs; InfoVis Examples

11/25: TBD

11/27: Thanksgiving

12/2: Aesthetic Issues in Vis

Lecturer: Claudio

Topics: Tufte principles

12/4: Aesthetic Issues in Vis

Lecturer: Claudio

Topics: NPR and Illustrative techniques for Vis

12/9: TBD

12/11: TBD