Difference between revisions of "SciVisFall2007/Schedule"
Line 275: | Line 275: | ||
Topics: continued from last class | Topics: continued from last class | ||
== 10/18: Volume | == 10/18: Direct Volume Rendering == | ||
Lecturer: Steve | Lecturer: Steve |
Revision as of 21:31, 25 October 2007
8/21: Introduction to visualization
Lecturer: Claudio
Topics: Scientific Visualization
Notes: lec01-notes.pdf
Slides: lec01.pdf
Animations: explosion_640x480-5.mov, fig7.mov, fig8.mov, fig9.mov, SevereTstorm.mov
Further reading:
Visualizing Spatial and Temporal Variability in Coastal Observatories, W. Herrera-Jimenez, W. Correa, C. Silva, and A. Baptista, IEEE Visualization 2003.
8/23: The visualization pipeline
Lecturer: Claudio
Topics: Procedural vs. Dataflow programming; Using Dataflow for the Vis Pipeline; Dataflow programming with VTK; Dataflow programming with VisTrails; python.
Notes: lec02-notes.pdf
Slides: lec02.pdf
VisTrails: During this class, we built a pipeline equivalent to the cone.tcl (see class slides). Here is the vistrails file: cone.vt
Further reading:
Provenance for Visualizations: Reproducibility and Beyond, C. Silva, J. Freire, and S. Callahan, IEEE Computing in Science and Engineering, to appear.
8/28: Modeling Data for Visualization
Lecturer: Carlos
Topics: Discrete vs continous data; Sampling and interpolation; Point vs triangulated data; Meshing data types; Regular vs irregular data; Tabular data; Vector and tensor fields
Notes: TBA
Slides: .ppt file
Further reading:
There is no required reading for this lecture. The notes will be available shortly. The following papers are there for people that are looking to get more advanced material that will not be covered in class.
Interpolation
Geodesic-loxodromes... This is the fancy interpolation for diffusion tensors I mentioned in class.
Bernstein polynomials These are the polynomials used for cubic Bezier curves that I mentioned in class.
Separability
Extensions of the Zwart-Powell Box spline... This is a recent paper that shows a class of trivariate reconstruction techniques that are not separable.
Tensors
Visualization and Analysis of Diffusion Tensor Fields Gordon Kindlmann's PhD. thesis, with everything you ever wanted to know about DTI. Section 2.1 has a good primer in tensor algebra.
8/30: Modeling Data for Visualization
Lecturer: Carlos
Topics: Geometry Processing: Reconstruction and meshing; Simplification; Smoothing; Other Filtering algorithms
Notes: .pdf file. If you want to print these, you might want to wait for a week or two, until I finish polishing them.
Slides: .ppt file These slides include simplificatin algorithms, which I'll talk about next week.
9/4: Elementary Plotting Techniques
Lecturer: Steve
Topics: Principles of Graph Construction
Notes: PlottingNotes.pdf
Slides: Plotting1.pdf
Vistrails: See next lecture.
Further Reading: There is no required reading for this lecture. For those interested in more depth, the following books are very useful:
- The Elements of Graphing Data. William S. Cleveland, Hobart Press, 2nd Edition, 1994.
- Visualizing Data. William S. Cleveland, Hobart Press, 1993.
- The Visual Display of Quantitative Information. Edward R. Tufte, Graphics Press, 2001.
- Visual Explanations: Images and Quantities, Evidence and Narrative. Edward R. Tufte, Graphics Press, 2997.
9/6: Elementary Plotting Techniques
Lecturer: Steve
Topics: Simple Plotting Methods: Dot Plots, Connected Symbol Plots, Scatter Plots, Histograms, Others. Advanced Plotting Methods: Multimodal, Higher Dimensional, Correlation, Uncertainty and Variation.
Notes: PlottingNotes.pdf
Slides: Plotting2.pdf
Vistrails: PlottingVistrails.zip - Unzip this file in the examples directory of your VisTrails installation and it will add the vistrails along with their data sets (in the data directory). If you don't have permission to write to this directory (CADE users), then unzip the file where you want. Just be aware that in this case the paths for the data files may not be correct for most vistrails and will need to be fixed before they will execute properly.
Further Reading: There is no required reading for this lecture. Some articles of interest:
9/11: Color and Human Perception
Lecturer: Claudio
Topics: Human vision system; Optical illusions
Notes: TBA
Slides: human-vision.pdf
Links:
http://en.wikipedia.org/wiki/Eye
http://www.grand-illusions.com/gregory2.htm (also, see the related book: [1])
http://en.wikipedia.org/wiki/Purkinje_effect
http://www.handprint.com/HP/WCL/color2.html
9/13: Color and Human Perception
Lecturer: Claudio
Topics: Color Science; Color spaces; Color Blindness; Color maps; Tone mapping
Notes: TBA
Slides: colorvision.pdf
Links:
Further reading:
How Not to Lie with Visualization
http://en.wikipedia.org/wiki/Opponent_process
http://en.wikipedia.org/wiki/Color_models
http://en.wikipedia.org/wiki/Absolute_color_space
http://en.wikipedia.org/wiki/Additive_color
http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/SRGB_color_space
http://en.wikipedia.org/wiki/CIE_XYZ_color_space
9/18 (a): Color and Human Perception
Lecturer: Claudio
Same material as previous lecture.
9/18 (b): 2D Visualization Techniques
Lecturer: Carlos
Topics: 2-D contours, marching quads, marching tris; Color mapping; height fields; NPR
Slides: pdf file
Notes: pdf file
Vistrails: zip file with ozone.vt and data asymptotic decider in 2d heightfields
Note: These vistrails use relative file paths so you don't need to change each of them individually to match your directory structure. Simply unzip the file to whichever location is more convenient. Then, inside VisTrails, open the VisTrails shell, type:
import os os.chdir("c:/directory/where/you/unzipped/it")
This will change the directory so you should be able to just run the pipelines.
9/20: Math refresher
Lecturer: Carlos
Topics: Basic linear algebra; vectors; basic differential geometry (space curves, tangents, normals, surfaces); basic vector calculus (gradient, divergence, curl, gauss' theorem, green's theorem)
9/25: 2D Visualization Techniques
Lecturer: Carlos
Topics: 2-D vector fields, div, grad, curl in 2D; Steady vs Unsteady flows; Glyphs; 2-D streamlines, streaklines, pathlines
Slides: pdf file
Notes: coming soon
Vistrails: vistrail with steady vector field vis and data vistrail with unsteady vector field vis and data Note: Because VTK does not support time-varying datasets directly, we had to create a reasonably ugly hack to simulate unsteady fields. This means the datasets are quite big (80MB in total).
9/27 (a): 2D Visualization Techniques
Lecturer Carlos
Same material as last lecture.
9/27 (b): Volume Vis
Lecturer: Claudio
Topics: Slicing; Contours; Marching algorithms
Slides: iso-basic.pdf
References:
Marching cubes: A high resolution 3D surface construction algorithm
The asymptotic decider: resolving the ambiguity in marching cubes
10/2: Volume Vis
Lecturer: Claudio
Topics: Accelerating structures; High-quality contours
Slides:
References:
A Near Optimal Isosurface Extraction Algorithm Using the Span Space
Automatic Isosurface Propagation Using an Extrema Graph and Sorted Boundary Cell Lists
Speeding Up Isosurface Extraction Using Interval Trees
10/4: Volume Vis
Lecturer: Claudio
Topics: High quality isosurfaces
Slides: iso-quality.pdf
References:
Edge Transformations for Improving Mesh Quality of Marching Cubes
High-Quality Extraction of Isosurfaces from Regular and Irregular Grids
Dual contouring of hermite data
Topology, Accuracy, and Quality of Isosurface Meshes Using Dynamic Particles
Material interface reconstruction
10/9: Fall break
10/11: Fall break
10/16: Volume Vis
Lecturer: Claudio
Topics: continued from last class
10/18: Direct Volume Rendering
Lecturer: Steve
Topics: Introduction to volume rendering
Slides: VolumeRendering1.pdf
Notes: dvr.pdf
vistrails: to appear
References: Optical Models for Direct Volume Rendering
10/23: Midterm 1
10/25: Direct Volume Rendering
Lecturer: Steve
Topics: Structured grid techniques: ray-casting, splatting, texture slicing, shear-warp
Slides: VolumeRendering2.pdf
Notes: same as previous class
vistrails: same as previous class
References:
Display of Surfaces from Volume Data - Ray casting paper
Interactive Volume Rendering - Splatting paper, paper requires ACM digital library access
Accelerated volume rendering and tomographic reconstruction using texture mapping hardware - Texture slicing paper, requires ACM digital library access
Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transformation - Shear-warp paper
10/30: Vector and Tensor Visualization
Lecturer: Claudio
Topics: LIC; hyper LIC; Topology-based techniques
11/1: Simplification Techniques
Guest lecture: Yuan Zhou
11/6: Cosmology and EEG analysis
Guest lecture: Erik Anderson
11/8: Vector and Tensor Vis
Lecturer: Carlos
Topics: Glyphs; DTI techniques
11/13: Aesthetic Issues in Vis
Lecturer: Claudio
Topics: Volume Illustration and NPR
11/15: Aesthetic Issues in Vis
Lecturer: Steve
Topics: Tufte
11/20: Aesthetic Issues in Vis
Lecturer: Steve
Topics: Tufte
11/22: Thanksgiving
11/27: Information Visualization
Lecturer: Carlos
Topics: Parallel coordinates; Graph visualization
11/29: Information Visualization
Lecturer: Claudio
Topics: Hierarchical data vis; brushing; sizing text