Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/JacobiEllipsoids"

From VistrailsWiki
Jump to navigation Jump to search
Line 57: Line 57:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2 - (A_1+A_3) \, ,
<math>~2 - (A_1+A_3) \, ,</math>
</math>
   </td>
   </td>
</tr>
</tr>
Line 167: Line 166:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl(\frac{b}{a}\biggr)^2 \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr]-\biggl(\frac{c}{a}\biggr)^2  A_3 =0 \, ,</math>
<math>~\biggl(\frac{b}{a}\biggr)^2 \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr]-\biggl(\frac{c}{a}\biggr)^2  A_3 =0 </math>
   </td>
   </td>
</tr>
</tr>
 
<tr><td align="center" colspan="3">and</td></tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
Line 179: Line 178:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2\biggl\{A_2 - \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr] \biggr\}</math>
<math>~2\biggl\{2 - (A_1+A_3) - \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr] \biggr\}</math>
   </td>
   </td>
</tr>
</tr>
Line 186: Line 185:
</table>
</table>
</div>
</div>
==Roots of the Governing Relation==
To simplify notation, here we will set,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~x \equiv \frac{b}{a}</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp;
  </td>
  <td align="left">
<math>~y \equiv \frac{c}{a} \, ,</math>
  </td>
</tr>
</table>
</div>
in which case the governing relation is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~f_J</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{x^2}{1-x^2} \biggl[ 2(1-A_1)-A_3\biggr]-y^2  A_3 =0 \, .</math>
  </td>
</tr>
</table>
</div>
Our plan is to employ the Newton-Raphson method to find the root(s) of the <math>~f_J = 0</math> relation, typically holding <math>~y</math> fixed and using the Newton-Raphson technique to identify the corresponding value of <math>~x</math> that defines the root.  Using this approach, the Newton-Raphson technique requires specification of, not only the function, <math>~f_J</math>, but also its first derivative,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~f_J^'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{df}{dx} \, .</math>
  </td>
</tr>
</table>
</div>


[http://functions.wolfram.com/EllipticIntegrals/EllipticF/introductions/IncompleteEllipticIntegrals/ShowAll.html Derivatives of E and F]
[http://functions.wolfram.com/EllipticIntegrals/EllipticF/introductions/IncompleteEllipticIntegrals/ShowAll.html Derivatives of E and F]

Revision as of 02:06, 24 June 2016

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Jacobi Ellipsoids

General Coefficient Expressions

As has been detailed in an accompanying chapter, the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3) ~\leftrightarrow~(a,b,c)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions:

<math> ~A_1 </math>

<math> ~= </math>

<math>~2\biggl(\frac{b}{a}\biggr)\biggl(\frac{c}{a}\biggr) \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, , </math>

<math> ~A_3 </math>

<math> ~= </math>

<math> ~\biggl(\frac{b}{a}\biggr) \biggl[ \frac{(b/a) \sin\theta - (c/a)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, , </math>

<math> ~A_2 </math>

<math> ~= </math>

<math>~2 - (A_1+A_3) \, ,</math>

where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments,

<math>~\theta = \cos^{-1} \biggl(\frac{c}{a} \biggr)</math>

      and      

<math>~k = \biggl[\frac{1 - (b/a)^2}{1 - (c/a)^2} \biggr]^{1/2} \, .</math>

[ EFE, Chapter 3, §17, Eq. (32) ]


Equilibrium Conditions for Jacobi Ellipsoids

Pulling from Chapter 6 — specifically, §39 — of Chandrasekhar's EFE, we understand that the semi-axis ratios, <math>~(\tfrac{b}{a},\tfrac{c}{a})</math> associated with Jacobi ellipsoids are given by the roots of the equation,

<math>~a^2 b^2 A_{12}</math>

<math>~=</math>

<math>~c^2 A_3 \, ,</math>

[ EFE, §39, Eq. (4) ]

and the associated value of the square of the equilibrium configuration's angular velocity is,

<math>~\frac{\Omega^2}{\pi G \rho}</math>

<math>~=</math>

<math>~2B_{12} \, ,</math>

[ EFE, §39, Eq. (5) ]

where,

<math>~A_{12}</math>

<math>~\equiv</math>

<math>~-\frac{A_1-A_2}{(a^2 - b^2)} \, ,</math>

[ EFE, §21, Eq. (107) ]

<math>~B_{12}</math>

<math>~\equiv</math>

<math>~A_2 - a^2A_{12} \, .</math>

[ EFE, §21, Eq. (105) ]


Taken together, we see that, written in terms of the two primary coefficients, <math>~A_1</math> and <math>~A_3</math>, the pair of defining relations for Jacobi ellipsoids is:


<math>~f_J</math>

<math>~\equiv</math>

<math>~\biggl(\frac{b}{a}\biggr)^2 \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr]-\biggl(\frac{c}{a}\biggr)^2 A_3 =0 </math>

and

<math>~\frac{\Omega^2}{\pi G \rho}</math>

<math>~=</math>

<math>~2\biggl\{2 - (A_1+A_3) - \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr] \biggr\}</math>

Roots of the Governing Relation

To simplify notation, here we will set,

<math>~x \equiv \frac{b}{a}</math>

      and      

<math>~y \equiv \frac{c}{a} \, ,</math>

in which case the governing relation is,

<math>~f_J</math>

<math>~=</math>

<math>~\frac{x^2}{1-x^2} \biggl[ 2(1-A_1)-A_3\biggr]-y^2 A_3 =0 \, .</math>

Our plan is to employ the Newton-Raphson method to find the root(s) of the <math>~f_J = 0</math> relation, typically holding <math>~y</math> fixed and using the Newton-Raphson technique to identify the corresponding value of <math>~x</math> that defines the root. Using this approach, the Newton-Raphson technique requires specification of, not only the function, <math>~f_J</math>, but also its first derivative,

<math>~f_J^'</math>

<math>~=</math>

<math>~\frac{df}{dx} \, .</math>


Derivatives of E and F

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation