Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/JacobiEllipsoids"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Jacobi Ellipsoids: Continue developing derivatives wrt x)
 
(29 intermediate revisions by the same user not shown)
Line 1: Line 1:
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __NOTOC__ will force TOC off -->
<!-- __NOTOC__ will force TOC off -->
=Jacobi Ellipsoids=
{{LSU_HBook_header}}
{{LSU_HBook_header}}


=Jacobi Ellipsoids=
==General Coefficient Expressions==
==General Coefficient Expressions==


Line 40: Line 41:
   <td align="left">
   <td align="left">
<math>
<math>
~\biggl(\frac{b}{a}\biggr) \biggl[  \frac{(b/a) \sin\theta - (c/a)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, ,
~2\biggl(\frac{b}{a}\biggr) \biggl[  \frac{(b/a) \sin\theta - (c/a)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, ,
</math>
</math>
   </td>
   </td>
Line 81: Line 82:
</table>
</table>
</div>
</div>


==Equilibrium Conditions for Jacobi Ellipsoids==
==Equilibrium Conditions for Jacobi Ellipsoids==
Line 155: Line 155:




<div align="center">
<div align="center" id="JacobiConstraints">
<table border="1" align="center" cellpadding="8"><tr><td align="center">
<table border="1" align="center" cellpadding="8"><tr><td align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 188: Line 188:
==Roots of the Governing Relation==
==Roots of the Governing Relation==


===Constraint on Axis-Ratio Relationship===
To simplify notation, here we will set,
To simplify notation, here we will set,
<div align="center">
<div align="center">
Line 194: Line 195:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~x \equiv \frac{b}{a}</math>
<math>~\chi \equiv \frac{b}{a}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 200: Line 201:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~y \equiv \frac{c}{a} \, ,</math>
<math>~\upsilon \equiv \frac{c}{a} \, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 216: Line 217:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{x^2}{1-x^2} \biggl[ 2(1-A_1)-A_3\biggr]-y^2  A_3 =0 \, .</math>
<math>~\frac{\chi^2}{1-\chi^2} \biggl[ 2(1-A_1)-A_3\biggr]-\upsilon^2  A_3 =0 \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 222: Line 223:
</div>
</div>


Our plan is to employ the Newton-Raphson method to find the root(s) of the <math>~f_J = 0</math> relation, typically holding <math>~y</math> fixed and using the Newton-Raphson technique to identify the corresponding "root" value of <math>~x</math>.  Using this approach, the Newton-Raphson technique requires specification of, not only the function, <math>~f_J</math>, but also its first derivative,
Our plan is to employ the [https://brilliant.org/wiki/newton-raphson-method/ Newton Raphson method] to find the root(s) of the <math>~f_J = 0</math> relation, typically holding <math>~\upsilon</math> fixed and using the Newton-Raphson technique to identify the corresponding "root" value of <math>~\chi</math>.  Using this approach, the [https://brilliant.org/wiki/newton-raphson-method/ Newton Raphson technique] requires specification of, not only the function, <math>~f_J</math>, but also its first derivative,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 234: Line 235:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{df_J}{dx} \, .</math>
<math>~\frac{df_J}{d\chi} \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 240: Line 241:
</div>
</div>


Let's determine the requisite expression, using a prime superscript to indicate differentiation with respect to <math>~x</math>.   
Let's determine the requisite expression, using a prime superscript to indicate differentiation with respect to <math>~\chi</math>.   
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 253: Line 254:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ 2(1-A_1)-A_3\biggr]\biggl[ \frac{2x}{(1-x^2)^2} \biggr]
\biggl[ 2(1-A_1)-A_3\biggr]\biggl[ \frac{2\chi}{(1-\chi^2)^2} \biggr]
+\frac{x^2}{1-x^2} \biggl[ 2(1-A_1^')-A_3^'\biggr]
-\frac{\chi^2}{1-\chi^2} \biggl[ 2A_1^'+A_3^'\biggr]
-y^2  A_3^' \, ,
-\upsilon^2  A_3^' \, ,
</math>
</math>
   </td>
   </td>
Line 261: Line 262:
</table>
</table>
</div>
</div>
where, given that <math>~\theta</math> does not depend on <math>~x</math>,
where, given that <math>~\theta</math> does not depend on <math>~\chi</math>,
<div align="center">
<div align="center">
<table align="center" border=0 cellpadding="3">
<table align="center" border=0 cellpadding="3">
Line 276: Line 277:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{2y}{\sin^3\theta}  \cdot \frac{d}{dx}\biggl\{ \frac{x}{k^2} \biggl[ F(\theta,k) - E(\theta,k) \biggr] \biggr\}
<math>~\frac{2\upsilon}{\sin^3\theta}  \cdot \frac{d}{d\chi}\biggl\{ \frac{\chi}{k^2} \biggl[ F(\theta,k) - E(\theta,k) \biggr] \biggr\}
</math>
</math>
   </td>
   </td>
Line 291: Line 292:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{2y}{k^3 \sin^3\theta}  \cdot \biggl\{ [ F - E ] [1 - 2xk^'  ]  
<math>~\frac{2\upsilon}{k^3 \sin^3\theta}  \cdot \biggl\{ [ F - E ] [k - 2\chi k^'  ]  
+xk [ F^' - E^' ]\biggr\} \, ,
+\chi k [ F^' - E^' ]\biggr\} \, ,
</math>
</math>
   </td>
   </td>
Line 310: Line 311:
   <td align="left">
   <td align="left">
<math>
<math>
~\frac{1}{\sin^3\theta}  \cdot \frac{d}{dx}\biggl\{ \frac{x}{(1-k^2)} \biggl[  x \sin\theta - yE(\theta,k)\biggr] \biggr\}
~\frac{2}{\sin^3\theta}  \cdot \frac{d}{d\chi}\biggl\{ \frac{\chi}{(1-k^2)} \biggl[  \chi \sin\theta - \upsilon E(\theta,k)\biggr] \biggr\}
</math>
</math>
   </td>
   </td>
Line 326: Line 327:
   <td align="left">
   <td align="left">
<math>
<math>
~\frac{1}{(1-k^2)^2\sin^3\theta}  \biggl\{  
~\frac{2}{(1-k^2)^2\sin^3\theta}  \biggl\{  
\biggl[  x \sin\theta - yE\biggr]\biggl[ (1-k^2) +2xkk^' \biggr] + x(1-k^2) \biggl[  \sin\theta - yE^'\biggr]
\biggl[  \chi \sin\theta - \upsilon E\biggr]\biggl[ (1-k^2) +2\chi kk^' \biggr] + \chi(1-k^2) \biggl[  \sin\theta - \upsilon E^'\biggr]
\biggr\}\, ,
\biggr\}\, ,
</math>
</math>
Line 342: Line 343:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{d}{dx}\biggl[\frac{1 - x^2}{1 - y^2} \biggr]^{1/2} = \frac{-x}{(1 - x^2)^{1/2}(1 - y^2)^{1/2}} \, ,  
\frac{d}{d\chi}\biggl[\frac{1 - \chi^2}{1 - \upsilon^2} \biggr]^{1/2} = \frac{-\chi}{(1 - \chi^2)^{1/2}(1 - \upsilon^2)^{1/2}} \, ,  
</math>
</math>
   </td>
   </td>
Line 377: Line 378:
</div>
</div>


Now, according to [http://functions.wolfram.com/EllipticIntegrals/EllipticF/introductions/IncompleteEllipticIntegrals/ShowAll.html online Wolfram documentation],
Now, according to [http://functions.wolfram.com/EllipticIntegrals/EllipticF/introductions/IncompleteEllipticIntegrals/ShowAll.html online WolframResearch documentation] &#8212; see, in particular, the subsection titled, "Representations of Derivatives" &#8212;
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{\partial F(z|m)}{\partial m}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{E(z|m)}{2(1-m)m} - \frac{F(z|m)}{2m} - \frac{\sin(2z)}{4(1-m)\sqrt{1-m\sin^2(z)}} \, ,
</math>
  </td>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{\partial E(z|m)}{\partial m}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{E(z|m) - F(z|m)}{2m} \, ,</math>
  </td>
</tr>
</table>
</div>
where, <math>~z~\leftrightarrow~\theta</math>, and,
<div align="center">
<math>~m \equiv k^2 ~~~~\Rightarrow~~~~\frac{dm}{dk} = 2k \ .</math>
</div>
Hence, we have,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~F^'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[\frac{\partial F(z|m)}{\partial m} \cdot \frac{dm}{dk}\biggr] k^'
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{E(\theta,k)}{2(1-k^2)k^2} - \frac{F(\theta,k)}{2k^2} - \frac{\sin(2\theta)}{4(1-k^2)\sqrt{1-k^2\sin^2\theta}} \biggr] 2kk^' \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~E^'</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{\partial E(z|m)}{\partial m} \cdot \frac{dm}{dk}\biggr] k^'
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ E(\theta,k) - F(\theta,k) \biggr] \frac{k^'}{k} \, .
</math>
  </td>
</tr>
</table>
</div>
This, then, gives us all of the expressions necessary to specify the derivative, <math>~f_J^'</math> analytically.
 
 
 
<table border="1" cellpadding="5" align="center">
<tr>
  <th align="center" colspan="1">
<font size="+1">Table 1:&nbsp; Double-Precision Evaluations</font><p></p>
Related to Table IV in [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 6, &sect;39 (p. 103)</font>
</th>
</tr>
<tr><td align="left">
<pre>
        b/a      c/a            omega2              angmom              5L/M                fJ              fJderiv
 
        1.00  0.582724    3.742297785D-01    3.037510987D-01    4.232965627D+00    0.000000000D+00    0.000000000D+00
        0.96  0.570801    3.739782202D-01    3.039551227D-01    4.235808832D+00    1.377942479D-06    1.636908401D-01
        0.92  0.558330    3.731876801D-01    3.046006837D-01    4.244805137D+00    -6.821687132D-07    1.676406830D-01
        0.88  0.545263    3.717835971D-01    3.057488283D-01    4.260805266D+00    8.533280272D-07    1.715558312D-01
        0.84  0.531574    3.696959199D-01    3.074667323D-01    4.284745355D+00    -4.622993727D-08    1.754024874D-01
        0.80  0.517216    3.668370069D-01    3.098368632D-01    4.317774645D+00    2.805300664D-08    1.791408327D-01
        0.76  0.502147    3.631138118D-01    3.129555079D-01    4.361234951D+00    3.221800126D-07    1.827219476D-01
        0.72  0.486322    3.584232032D-01    3.169377270D-01    4.416729718D+00    3.274773094D-08    1.860866255D-01
        0.68  0.469689    3.526490289D-01    3.219229588D-01    4.486202108D+00    1.202999164D-08    1.891636215D-01
        0.64  0.452194    3.456641138D-01    3.280805511D-01    4.572012092D+00    2.681560312D-07    1.918668912D-01
        0.60  0.433781    3.373298891D-01    3.356184007D-01    4.677056841D+00    1.037186290D-08    1.940927000D-01
        0.56  0.414386    3.274928085D-01    3.447962894D-01    4.804956583D+00    1.071021385D-07    1.957166395D-01
        0.52  0.393944    3.159887358D-01    3.559412795D-01    4.960269141D+00    8.098003093D-08    1.965890756D-01
        0.48  0.372384    3.026414267D-01    3.694732246D-01    5.148845443D+00    1.255768368D-07    1.965308751D-01
        0.44  0.349632    2.872670174D-01    3.859399647D-01    5.378319986D+00    1.329168636D-08    1.953277019D-01
        0.40  0.325609    2.696779847D-01    4.060726774D-01    5.658882201D+00    -9.783004411D-08    1.927241063D-01
        0.36  0.300232    2.496925963D-01    4.308722159D-01    6.004479614D+00    1.044268276D-07    1.884168286D-01
        0.32  0.273419    2.271530240D-01    4.617497270D-01    6.434777459D+00    -4.469279448D-08    1.820477545D-01
        0.28  0.245083    2.019461513D-01    5.007767426D-01    6.978643856D+00    7.996820889D-08    1.731984783D-01
        0.24  0.215143    1.740514751D-01    5.511400218D-01    7.680488329D+00    1.099319693D-07    1.613864645D-01
        0.20  0.183524    1.436093757D-01    6.180687545D-01    8.613182979D+00    5.068010978D-08    1.460685065D-01
        0.16  0.150166    1.110438660D-01    7.109267615D-01    9.907218635D+00    -2.170751250D-08    1.266576761D-01
        0.12  0.115038    7.728058393D-02    8.487699974D-01    1.182815219D+01    3.613784147D-09    1.025686850D-01
        0.08  0.078166    4.416740942D-02    1.079303624D+00    1.504078558D+01    3.319018649D-08    7.332782508D-02
        0.04  0.039688    1.541513490D-02    1.582762691D+00    2.205680933D+01    -6.674246644D-09    3.882477311D-02
</pre>
</td></tr>
</table>
 
<span id="Table2"><b>With regard to our Table 1 (immediately above):</b></span>  Given each pair of axis ratios, <math>~(\tfrac{b}{a},\tfrac{c}{a})</math> &#8212; copied from Table IV of EFE (see columns 1 and 2 of our Table 1) &#8212; and the corresponding coefficient values, <math>~A_1</math>, <math>~A_2</math>, and <math>~A_3</math>, as tabulated in [[User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids#Table2|Table 2 of our accompanying discussion]], we calculated corresponding values of <math>~\Omega^2</math> (column 3) and total angular momentum (column 4) in the units used in EFE's Table IV, as well as  (column 5) the total angular momentum in units used by [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Christodoulou, ''et al.'' (1995, ApJ, 446, 472)] &#8212; see [[User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids#Example_Evaluations|our related discussion of these physical quantities]].  We also have tabulated associated values of the function, <math>~f_J</math>, (column 6) and its first derivative, <math>~f_J^'</math>, (column 7) as defined immediately above.  Notice that <math>~f_J</math> is very nearly zero in all cases, which indicates that each axis-ratio pair indeed identifies a configuration that lies along the Jacobi sequence.
 
<table border="1" cellpadding="5" align="center">
<tr>
  <th align="center" colspan="1">
<font size="+1">Table 2:&nbsp; Jacobi Sequence</font>
</th>
</tr>
<tr><td align="left">
<pre>
  b/a      c/a        A1        A2        A3      omega2      a      5L/M
 
  0.990699  0.580000  0.512818  0.518962  0.968220  0.374217  1.868761  4.233113
  0.901558  0.552381  0.481786  0.549836  0.968378  0.372621  1.960046  4.251259
  0.820783  0.524762  0.450993  0.580215  0.968792  0.368424  2.057217  4.299402
  0.747135  0.497143  0.420459  0.610088  0.969452  0.361716  2.161309  4.377683
  0.679613  0.469524  0.390210  0.639442  0.970348  0.352587  2.273548  4.486951
  0.617393  0.441905  0.360273  0.668258  0.971469  0.341129  2.395412  4.628802
  0.559798  0.414286  0.330684  0.696516  0.972800  0.327439  2.528716  4.805667
  0.506257  0.386667  0.301483  0.724187  0.974329  0.311620  2.675723  5.020964
  0.456291  0.359048  0.272719  0.751241  0.976040  0.293786  2.839307  5.279337
  0.409492  0.331429  0.244450  0.777636  0.977914  0.274062  3.023190  5.587020
  0.365507  0.303810  0.216744  0.803324  0.979931  0.252593  3.232298  5.952388
  0.324034  0.276190  0.189686  0.828246  0.982067  0.229546  3.473314  6.386811
  0.284807  0.248571  0.163376  0.852329  0.984295  0.205118  3.755577  6.906010
  0.247591  0.220952  0.137939  0.875480  0.986581  0.179549  4.092599  7.532311
  0.212179  0.193333  0.113527  0.897587  0.988885  0.153130  4.504785  8.298565
  0.178382  0.165714  0.090333  0.918505  0.991162  0.126229  5.024664  9.255452
  0.146026  0.138095  0.068601  0.938044  0.993355  0.099316  5.707871 10.486253
  0.114948  0.110476  0.048654  0.955953  0.995393  0.073010  6.659169 12.140357
  0.084989  0.082857  0.030927  0.971879  0.997194  0.048162  8.105501 14.522397
  0.055982  0.055238  0.016051  0.985298  0.998651  0.026008 10.663879 18.396951
  0.027738  0.027619  0.005032  0.995331  0.999637  0.008539 16.979084 26.660547
</pre>
</td></tr>
</table>
 
<b>With regard to our Table 2 (immediately above):</b>  Here we specified twenty-one values of the axis ratio, <math>~\tfrac{c}{a}</math>, (column 2) and used our Newton-Raphson-based root finder to identify corresponding values of the companion axis ratio, <math>~\tfrac{b}{a}</math>, (column 1) that satisfies the governing relation, <math>~f_J = 0</math>.
 
===Angular Momentum Constraint===
Alternatively, let's choose a value for the system's total angular momentum, <math>~L > 4.23296</math>, and solve for the axis-ratio pair that identifies that configuration's location along the Jacobi sequence.  We'll adopt the units used by [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Christodoulou ''et al'' (1995)], that is, <math>~G = 1</math>, <math>~\pi \rho = 1</math> and <math>~M = 5</math>, hence,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~a^3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{3Ma^2}{4\pi(bc)\rho} = \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1}  \biggl(\frac{c}{a}\biggr)^{-1}\, .</math>
  </td>
</tr>
</table>
</div>
 
Given that the relationship between <math>~L</math> and <math>~\Omega</math> in equilibrium Jacobi ellipsoids is,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~L</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~a^2\biggl[1 + \biggl(\frac{b}{a}\biggr)^2\biggr]\Omega </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1}  \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{2/3}
\biggl[1 + \biggl(\frac{b}{a}\biggr)^2\biggr]\Omega </math>
  </td>
</tr>
</table>
</div>
 
the [[#JacobiConstraints|constraint on <math>~\Omega^2</math> given above]] implies that,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~L^2 \biggl[ \frac{4}{15}\biggl(\frac{b}{a}\biggr)  \biggl(\frac{c}{a}\biggr) \biggr]^{4/3}
\biggl[1 + \biggl(\frac{b}{a}\biggr)^2\biggr]^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2\biggl\{2 - (A_1+A_3) - \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr] \biggr\} \, .</math>
  </td>
</tr>
</table>
</div>
Or, again adopting the shorthand notation,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\chi \equiv \frac{b}{a}</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp;
  </td>
  <td align="left">
<math>~\upsilon \equiv \frac{c}{a} \, ,</math>
  </td>
</tr>
</table>
</div>
 
we seek roots of the function,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~f_L</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~L^2  - \biggl[ \frac{3^4\cdot 5^4}{2^5}  \biggr]^{1/3}\chi^{-4/3} \upsilon^{-4/3}(1 + \chi^2)^{2}
\biggl\{[2 - (A_1+A_3)] - \biggl[ 2(1-A_1)-A_3\biggr](1-\chi^2)^{-1} \biggr\} = 0 \, .</math>
  </td>
</tr>
</table>
</div>
 
As [[#Constraint_on_Axis-Ratio_Relationship|above]], we will hold <math>~\upsilon</math> fixed and use the Newton-Raphson technique to identify the corresponding "root" value of <math>~\chi</math>.  Hence, we need to specify, not only the function, <math>~f_L</math>, but also its first derivative,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~f_L^'</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{\partial f_L}{\partial \chi} \, .</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \biggl[ \frac{3^4\cdot 5^4}{2^5}  \biggr]^{1/3}\upsilon^{-4/3} \frac{\partial}{\partial \chi} \biggl\{
\chi^{-4/3} (1 + \chi^2)^{2}
[2 - (A_1+A_3)]
- \chi^{-4/3} (1 + \chi^2)^{2}(1-\chi^2)^{-1}[ 2(1-A_1)-A_3]
\biggr\}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \biggl[ \frac{3^4\cdot 5^4}{2^5}  \biggr]^{1/3}\upsilon^{-4/3} \biggl\{
-\frac{4}{3}\chi^{-7/3} (1 + \chi^2)^{2}[2 - (A_1+A_3)]
+4\chi^{-1/3} (1 + \chi^2)[2 - (A_1+A_3)]
-\chi^{-4/3} (1 + \chi^2)^{2}(A_1^'+A_3^')
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{4}{3} \chi^{-7/3} (1 + \chi^2)^{2}(1-\chi^2)^{-1}[ 2(1-A_1)-A_3]
- 4\chi^{-1/3} (1 + \chi^2)(1-\chi^2)^{-1}[ 2(1-A_1)-A_3]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- 2 \chi^{-1/3} (1 + \chi^2)^{2}(1-\chi^2)^{-2}[ 2(1-A_1)-A_3]
- \chi^{-4/3} (1 + \chi^2)^{2}(1-\chi^2)^{-1}[ -2A_1^'-A_3^']
\biggr\}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \biggl[ \frac{3\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \chi^{-7/3} (1 + \chi^2)\biggl\{
[12\chi^2-4(1 + \chi^2)][2 - (A_1+A_3)]
-3\chi (1 + \chi^2)(A_1^'+A_3^')
+ 3\chi (1 + \chi^2)(1-\chi^2)^{-1}[ 2A_1^' + A_3^']
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ (1-\chi^2)^{-2}\{ 4  (1 + \chi^2)(1-\chi^2)[ 2(1-A_1)-A_3]
- 12\chi^{2} (1-\chi^2)[ 2(1-A_1)-A_3]
- 6 \chi^{2} (1 + \chi^2)[ 2(1-A_1)-A_3] \}
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \biggl[ \frac{3\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \chi^{-7/3} (1 + \chi^2)\biggl\{
[8\chi^2-4]A_1
+ 3\chi (1 + \chi^2)(1-\chi^2)^{-1} [ (1+\chi^2)A_1^' + \chi^2A_3^' ]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2(1-\chi^2)^{-2} [ 2-2A_1-A_3] [ (4\chi^2-2)(1-\chi^2)^{2} +
2  (1 + \chi^2)(1-\chi^2)  - 6\chi^{2} (1-\chi^2) - 3 \chi^{2} (1 + \chi^2)
] \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \biggl[ \frac{3\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \chi^{-7/3} (1 + \chi^2)\biggl\{
3\chi (1 + \chi^2)(1-\chi^2)^{-1} [ (1+\chi^2)A_1^' + \chi^2A_3^' ]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~+[8\chi^2-4]A_1
+ 2(1-\chi^2)^{-2} [ 2-2A_1-A_3] [ - \chi^2 - 9\chi^4    + 4\chi^6 ] \biggr\}
</math>
  </td>
</tr>
<!--
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 4\chi^2 - 8\chi^4 + 4\chi^6 -2+4\chi^2 - 2\chi^4  + 2  - 2\chi^4  - 6\chi^{2}  + 6\chi^4 - 3 \chi^{2} - 3 \chi^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~-2 + 2
+ 4\chi^2 +4\chi^2  - 6\chi^{2}  - 3 \chi^{2} - 8\chi^4  - 2\chi^4  - 2\chi^4  + 6\chi^4 - 3 \chi^4 + 4\chi^6 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~- \chi^2 - 9\chi^4    + 4\chi^6 
</math>
  </td>
</tr>
-->
</table>
</div>
 
 
What values of <math>~L</math> should we choose?  In association with our [[User:Tohline/ThreeDimensionalConfigurations/EFE_Energies#Conserve_Only_L|discussion of warped free-energy surfaces]], we'd like to specify the eccentricity, <math>~e</math>, of a Maclaurin spheroid and adopt the angular momentum of ''that'' configuration.  According to our [[User:Tohline/Apps/MaclaurinSpheroids#Maclaurin_Spheroids_.28axisymmetric_structure.29|accompanying discussion of the properties of Maclaurin spheroids]],
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~L_\mathrm{Mac}^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2^2a^4\Omega^2</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2^3a^4 [ A_1 -A_3(1-e^2)]_\mathrm{Mac} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2^3 \biggl[\frac{3\cdot 5}{2^2}(1-e^2)^{-1/2}  \biggr]^{4/3} [ A_1 -A_3(1-e^2)]_\mathrm{Mac} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} (1-e^2)^{-2/3}  \biggl\{ \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2}  \biggr](1-e^2)^{1/2} 
-\frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{3/2}  \biggr\} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} (1-e^2)^{-2/3}  \biggl\{
\frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e}  \biggr](1-e^2)^{1/2} 
+\frac{2}{e^2} \biggl[\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{3/2} 
-\frac{1}{e^2} \biggl[ (1-e^2)^{1/2}  \biggr](1-e^2)^{1/2} 
-\frac{2}{e^2} \biggl[(1-e^2)^{-1/2}  \biggr](1-e^2)^{3/2} 
\biggr\} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} (1-e^2)^{-2/3}  \biggl\{
\frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e}  \biggr](1-e^2)^{1/2}  \biggl[3-2e^2\biggr]
-\frac{3(1-e^2)}{e^2} 
\biggr\} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} \frac{(1-e^2)^{1/3} }{e^2} \biggl\{
\biggl[\frac{\sin^{-1}e}{e}  \biggr](1-e^2)^{-1/2}  \biggl[3-2e^2\biggr] - 3 
\biggr\} \, . </math>
  </td>
</tr>
</table>
</div>
 
Note, for example, that if <math>~e = 0.85</math>, the square-root of this expression gives, <math>~L_\mathrm{Mac} = 4.7148806</math>, which matches the angular momentum that was used by [http://adsabs.harvard.edu/abs/1995ApJ...446..472C Christodoulou ''et al'' (1995)] to generate their Figure 3.
 
==Sequence Plots==
 
<div align="center">
<table border="1" cellpadding="5" width="80%">
<tr>
<td align="left">Jacobi Sequence: (blue) Points defined by data in Table IV of [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 6, &sect;39 (p. 103)</font>; (red) points generated here from [[#Roots_of_the_Governing_Relation|above-defined roots of the governing relation]].</td>
<td align="center">
Figure 2 extracted<sup>&dagger;</sup> from p. 902 of [http://adsabs.harvard.edu/abs/1965ApJ...142..890C S. Chandrasekhar (1965)]<p></p>
"''The Equilibrium and the Stability of the Riemann Ellipsoids.  I''"<p></p>
ApJ, vol. 142, pp. 890-921 &copy; [http://aas.org/ American Astronomical Society]
</td>
</tr>
<tr>
  <td align="center">
[[File:JacobiSequenceB.png|300px|Jacobi Sequence]]
  </td>
  <td align="center">
<!-- [[File:NormanWilson78D.png|650px|center|Norman &amp; Wilson (1978)]] -->
[[File:ChandrasekharFig2annotated.png|340px|Chandrasekhar Figure2]]
  </td>
</tr>
<tr><td align="left">&nbsp;</td>
<td align="left"><sup>&dagger;</sup>Original figure has been annotated (maroon-colored text and arrow added) for clarification.</td>
</tr>
<tr>
  <td align="center">
[[File:OverlapAttempt3.png|300px|Jacobi Sequence]]
  </td>
  <td align="center">
<!-- [[File:NormanWilson78D.png|650px|center|Norman &amp; Wilson (1978)]] -->
[[File:OverlapAttempt1.png|340px|Chandrasekhar Figure2]]
  </td>
</tr>
</table>
</div>


=See Also=
=See Also=

Latest revision as of 19:47, 13 June 2020


Jacobi Ellipsoids

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

General Coefficient Expressions

As has been detailed in an accompanying chapter, the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3) ~\leftrightarrow~(a,b,c)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions:

<math> ~A_1 </math>

<math> ~= </math>

<math>~2\biggl(\frac{b}{a}\biggr)\biggl(\frac{c}{a}\biggr) \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, , </math>

<math> ~A_3 </math>

<math> ~= </math>

<math> ~2\biggl(\frac{b}{a}\biggr) \biggl[ \frac{(b/a) \sin\theta - (c/a)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, , </math>

<math> ~A_2 </math>

<math> ~= </math>

<math>~2 - (A_1+A_3) \, ,</math>

where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments,

<math>~\theta = \cos^{-1} \biggl(\frac{c}{a} \biggr)</math>

      and      

<math>~k = \biggl[\frac{1 - (b/a)^2}{1 - (c/a)^2} \biggr]^{1/2} \, .</math>

[ EFE, Chapter 3, §17, Eq. (32) ]

Equilibrium Conditions for Jacobi Ellipsoids

Pulling from Chapter 6 — specifically, §39 — of Chandrasekhar's EFE, we understand that the semi-axis ratios, <math>~(\tfrac{b}{a},\tfrac{c}{a})</math> associated with Jacobi ellipsoids are given by the roots of the equation,

<math>~a^2 b^2 A_{12}</math>

<math>~=</math>

<math>~c^2 A_3 \, ,</math>

[ EFE, §39, Eq. (4) ]

and the associated value of the square of the equilibrium configuration's angular velocity is,

<math>~\frac{\Omega^2}{\pi G \rho}</math>

<math>~=</math>

<math>~2B_{12} \, ,</math>

[ EFE, §39, Eq. (5) ]

where,

<math>~A_{12}</math>

<math>~\equiv</math>

<math>~-\frac{A_1-A_2}{(a^2 - b^2)} \, ,</math>

[ EFE, §21, Eq. (107) ]

<math>~B_{12}</math>

<math>~\equiv</math>

<math>~A_2 - a^2A_{12} \, .</math>

[ EFE, §21, Eq. (105) ]


Taken together, we see that, written in terms of the two primary coefficients, <math>~A_1</math> and <math>~A_3</math>, the pair of defining relations for Jacobi ellipsoids is:


<math>~f_J</math>

<math>~\equiv</math>

<math>~\biggl(\frac{b}{a}\biggr)^2 \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr]-\biggl(\frac{c}{a}\biggr)^2 A_3 =0 </math>

and

<math>~\frac{\Omega^2}{\pi G \rho}</math>

<math>~=</math>

<math>~2\biggl\{2 - (A_1+A_3) - \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr] \biggr\}</math>

Roots of the Governing Relation

Constraint on Axis-Ratio Relationship

To simplify notation, here we will set,

<math>~\chi \equiv \frac{b}{a}</math>

      and      

<math>~\upsilon \equiv \frac{c}{a} \, ,</math>

in which case the governing relation is,

<math>~f_J</math>

<math>~=</math>

<math>~\frac{\chi^2}{1-\chi^2} \biggl[ 2(1-A_1)-A_3\biggr]-\upsilon^2 A_3 =0 \, .</math>

Our plan is to employ the Newton Raphson method to find the root(s) of the <math>~f_J = 0</math> relation, typically holding <math>~\upsilon</math> fixed and using the Newton-Raphson technique to identify the corresponding "root" value of <math>~\chi</math>. Using this approach, the Newton Raphson technique requires specification of, not only the function, <math>~f_J</math>, but also its first derivative,

<math>~f_J^'</math>

<math>~=</math>

<math>~\frac{df_J}{d\chi} \, .</math>

Let's determine the requisite expression, using a prime superscript to indicate differentiation with respect to <math>~\chi</math>.

<math>~f_J^'</math>

<math>~=</math>

<math>~ \biggl[ 2(1-A_1)-A_3\biggr]\biggl[ \frac{2\chi}{(1-\chi^2)^2} \biggr] -\frac{\chi^2}{1-\chi^2} \biggl[ 2A_1^'+A_3^'\biggr] -\upsilon^2 A_3^' \, , </math>

where, given that <math>~\theta</math> does not depend on <math>~\chi</math>,

<math> ~A_1^' </math>

<math> ~= </math>

<math>~\frac{2\upsilon}{\sin^3\theta} \cdot \frac{d}{d\chi}\biggl\{ \frac{\chi}{k^2} \biggl[ F(\theta,k) - E(\theta,k) \biggr] \biggr\} </math>

 

<math> ~= </math>

<math>~\frac{2\upsilon}{k^3 \sin^3\theta} \cdot \biggl\{ [ F - E ] [k - 2\chi k^' ] +\chi k [ F^' - E^' ]\biggr\} \, , </math>

<math> ~A_3^' </math>

<math> ~= </math>

<math> ~\frac{2}{\sin^3\theta} \cdot \frac{d}{d\chi}\biggl\{ \frac{\chi}{(1-k^2)} \biggl[ \chi \sin\theta - \upsilon E(\theta,k)\biggr] \biggr\} </math>

 

<math> ~= </math>

<math> ~\frac{2}{(1-k^2)^2\sin^3\theta} \biggl\{ \biggl[ \chi \sin\theta - \upsilon E\biggr]\biggl[ (1-k^2) +2\chi kk^' \biggr] + \chi(1-k^2) \biggl[ \sin\theta - \upsilon E^'\biggr] \biggr\}\, , </math>

<math>~k^'</math>

<math>~=</math>

<math>~ \frac{d}{d\chi}\biggl[\frac{1 - \chi^2}{1 - \upsilon^2} \biggr]^{1/2} = \frac{-\chi}{(1 - \chi^2)^{1/2}(1 - \upsilon^2)^{1/2}} \, , </math>

<math>~F^'</math>

<math>~=</math>

<math>~ \frac{\partial F(\theta,k)}{\partial k} \cdot k^' \, , </math>

<math>~E^'</math>

<math>~=</math>

<math>~ \frac{\partial E(\theta,k)}{\partial k} \cdot k^' \, . </math>

Now, according to online WolframResearch documentation — see, in particular, the subsection titled, "Representations of Derivatives" —

<math>~\frac{\partial F(z|m)}{\partial m}</math>

<math>~=</math>

<math>~ \frac{E(z|m)}{2(1-m)m} - \frac{F(z|m)}{2m} - \frac{\sin(2z)}{4(1-m)\sqrt{1-m\sin^2(z)}} \, , </math>

and,

<math>~\frac{\partial E(z|m)}{\partial m}</math>

<math>~=</math>

<math>~\frac{E(z|m) - F(z|m)}{2m} \, ,</math>

where, <math>~z~\leftrightarrow~\theta</math>, and,

<math>~m \equiv k^2 ~~~~\Rightarrow~~~~\frac{dm}{dk} = 2k \ .</math>

Hence, we have,

<math>~F^'</math>

<math>~=</math>

<math>~ \biggl[\frac{\partial F(z|m)}{\partial m} \cdot \frac{dm}{dk}\biggr] k^' </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{E(\theta,k)}{2(1-k^2)k^2} - \frac{F(\theta,k)}{2k^2} - \frac{\sin(2\theta)}{4(1-k^2)\sqrt{1-k^2\sin^2\theta}} \biggr] 2kk^' \, , </math>

<math>~E^'</math>

<math>~=</math>

<math>~ \biggl[ \frac{\partial E(z|m)}{\partial m} \cdot \frac{dm}{dk}\biggr] k^' </math>

 

<math>~=</math>

<math>~ \biggl[ E(\theta,k) - F(\theta,k) \biggr] \frac{k^'}{k} \, . </math>

This, then, gives us all of the expressions necessary to specify the derivative, <math>~f_J^'</math> analytically.


Table 1:  Double-Precision Evaluations

Related to Table IV in EFE, Chapter 6, §39 (p. 103)

         b/a      c/a            omega2              angmom              5L/M                fJ              fJderiv

        1.00   0.582724     3.742297785D-01     3.037510987D-01     4.232965627D+00     0.000000000D+00     0.000000000D+00
        0.96   0.570801     3.739782202D-01     3.039551227D-01     4.235808832D+00     1.377942479D-06     1.636908401D-01
        0.92   0.558330     3.731876801D-01     3.046006837D-01     4.244805137D+00    -6.821687132D-07     1.676406830D-01
        0.88   0.545263     3.717835971D-01     3.057488283D-01     4.260805266D+00     8.533280272D-07     1.715558312D-01
        0.84   0.531574     3.696959199D-01     3.074667323D-01     4.284745355D+00    -4.622993727D-08     1.754024874D-01
        0.80   0.517216     3.668370069D-01     3.098368632D-01     4.317774645D+00     2.805300664D-08     1.791408327D-01
        0.76   0.502147     3.631138118D-01     3.129555079D-01     4.361234951D+00     3.221800126D-07     1.827219476D-01
        0.72   0.486322     3.584232032D-01     3.169377270D-01     4.416729718D+00     3.274773094D-08     1.860866255D-01
        0.68   0.469689     3.526490289D-01     3.219229588D-01     4.486202108D+00     1.202999164D-08     1.891636215D-01
        0.64   0.452194     3.456641138D-01     3.280805511D-01     4.572012092D+00     2.681560312D-07     1.918668912D-01
        0.60   0.433781     3.373298891D-01     3.356184007D-01     4.677056841D+00     1.037186290D-08     1.940927000D-01
        0.56   0.414386     3.274928085D-01     3.447962894D-01     4.804956583D+00     1.071021385D-07     1.957166395D-01
        0.52   0.393944     3.159887358D-01     3.559412795D-01     4.960269141D+00     8.098003093D-08     1.965890756D-01
        0.48   0.372384     3.026414267D-01     3.694732246D-01     5.148845443D+00     1.255768368D-07     1.965308751D-01
        0.44   0.349632     2.872670174D-01     3.859399647D-01     5.378319986D+00     1.329168636D-08     1.953277019D-01
        0.40   0.325609     2.696779847D-01     4.060726774D-01     5.658882201D+00    -9.783004411D-08     1.927241063D-01
        0.36   0.300232     2.496925963D-01     4.308722159D-01     6.004479614D+00     1.044268276D-07     1.884168286D-01
        0.32   0.273419     2.271530240D-01     4.617497270D-01     6.434777459D+00    -4.469279448D-08     1.820477545D-01
        0.28   0.245083     2.019461513D-01     5.007767426D-01     6.978643856D+00     7.996820889D-08     1.731984783D-01
        0.24   0.215143     1.740514751D-01     5.511400218D-01     7.680488329D+00     1.099319693D-07     1.613864645D-01
        0.20   0.183524     1.436093757D-01     6.180687545D-01     8.613182979D+00     5.068010978D-08     1.460685065D-01
        0.16   0.150166     1.110438660D-01     7.109267615D-01     9.907218635D+00    -2.170751250D-08     1.266576761D-01
        0.12   0.115038     7.728058393D-02     8.487699974D-01     1.182815219D+01     3.613784147D-09     1.025686850D-01
        0.08   0.078166     4.416740942D-02     1.079303624D+00     1.504078558D+01     3.319018649D-08     7.332782508D-02
        0.04   0.039688     1.541513490D-02     1.582762691D+00     2.205680933D+01    -6.674246644D-09     3.882477311D-02

With regard to our Table 1 (immediately above): Given each pair of axis ratios, <math>~(\tfrac{b}{a},\tfrac{c}{a})</math> — copied from Table IV of EFE (see columns 1 and 2 of our Table 1) — and the corresponding coefficient values, <math>~A_1</math>, <math>~A_2</math>, and <math>~A_3</math>, as tabulated in Table 2 of our accompanying discussion, we calculated corresponding values of <math>~\Omega^2</math> (column 3) and total angular momentum (column 4) in the units used in EFE's Table IV, as well as (column 5) the total angular momentum in units used by Christodoulou, et al. (1995, ApJ, 446, 472) — see our related discussion of these physical quantities. We also have tabulated associated values of the function, <math>~f_J</math>, (column 6) and its first derivative, <math>~f_J^'</math>, (column 7) as defined immediately above. Notice that <math>~f_J</math> is very nearly zero in all cases, which indicates that each axis-ratio pair indeed identifies a configuration that lies along the Jacobi sequence.

Table 2:  Jacobi Sequence

   b/a       c/a        A1        A2        A3      omega2       a       5L/M

  0.990699  0.580000  0.512818  0.518962  0.968220  0.374217  1.868761  4.233113
  0.901558  0.552381  0.481786  0.549836  0.968378  0.372621  1.960046  4.251259
  0.820783  0.524762  0.450993  0.580215  0.968792  0.368424  2.057217  4.299402
  0.747135  0.497143  0.420459  0.610088  0.969452  0.361716  2.161309  4.377683
  0.679613  0.469524  0.390210  0.639442  0.970348  0.352587  2.273548  4.486951
  0.617393  0.441905  0.360273  0.668258  0.971469  0.341129  2.395412  4.628802
  0.559798  0.414286  0.330684  0.696516  0.972800  0.327439  2.528716  4.805667
  0.506257  0.386667  0.301483  0.724187  0.974329  0.311620  2.675723  5.020964
  0.456291  0.359048  0.272719  0.751241  0.976040  0.293786  2.839307  5.279337
  0.409492  0.331429  0.244450  0.777636  0.977914  0.274062  3.023190  5.587020
  0.365507  0.303810  0.216744  0.803324  0.979931  0.252593  3.232298  5.952388
  0.324034  0.276190  0.189686  0.828246  0.982067  0.229546  3.473314  6.386811
  0.284807  0.248571  0.163376  0.852329  0.984295  0.205118  3.755577  6.906010
  0.247591  0.220952  0.137939  0.875480  0.986581  0.179549  4.092599  7.532311
  0.212179  0.193333  0.113527  0.897587  0.988885  0.153130  4.504785  8.298565
  0.178382  0.165714  0.090333  0.918505  0.991162  0.126229  5.024664  9.255452
  0.146026  0.138095  0.068601  0.938044  0.993355  0.099316  5.707871 10.486253
  0.114948  0.110476  0.048654  0.955953  0.995393  0.073010  6.659169 12.140357
  0.084989  0.082857  0.030927  0.971879  0.997194  0.048162  8.105501 14.522397
  0.055982  0.055238  0.016051  0.985298  0.998651  0.026008 10.663879 18.396951
  0.027738  0.027619  0.005032  0.995331  0.999637  0.008539 16.979084 26.660547

With regard to our Table 2 (immediately above): Here we specified twenty-one values of the axis ratio, <math>~\tfrac{c}{a}</math>, (column 2) and used our Newton-Raphson-based root finder to identify corresponding values of the companion axis ratio, <math>~\tfrac{b}{a}</math>, (column 1) that satisfies the governing relation, <math>~f_J = 0</math>.

Angular Momentum Constraint

Alternatively, let's choose a value for the system's total angular momentum, <math>~L > 4.23296</math>, and solve for the axis-ratio pair that identifies that configuration's location along the Jacobi sequence. We'll adopt the units used by Christodoulou et al (1995), that is, <math>~G = 1</math>, <math>~\pi \rho = 1</math> and <math>~M = 5</math>, hence,

<math>~a^3</math>

<math>~=</math>

<math>~\frac{3Ma^2}{4\pi(bc)\rho} = \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1} \biggl(\frac{c}{a}\biggr)^{-1}\, .</math>

Given that the relationship between <math>~L</math> and <math>~\Omega</math> in equilibrium Jacobi ellipsoids is,

<math>~L</math>

<math>~=</math>

<math>~a^2\biggl[1 + \biggl(\frac{b}{a}\biggr)^2\biggr]\Omega </math>

 

<math>~=</math>

<math>~\biggl[ \frac{15}{4}\biggl(\frac{b}{a}\biggr)^{-1} \biggl(\frac{c}{a}\biggr)^{-1} \biggr]^{2/3} \biggl[1 + \biggl(\frac{b}{a}\biggr)^2\biggr]\Omega </math>

the constraint on <math>~\Omega^2</math> given above implies that,

<math>~L^2 \biggl[ \frac{4}{15}\biggl(\frac{b}{a}\biggr) \biggl(\frac{c}{a}\biggr) \biggr]^{4/3} \biggl[1 + \biggl(\frac{b}{a}\biggr)^2\biggr]^{-2}</math>

<math>~=</math>

<math>~2\biggl\{2 - (A_1+A_3) - \biggl[ \frac{2(1-A_1)-A_3}{1 - (b/a)^2} \biggr] \biggr\} \, .</math>

Or, again adopting the shorthand notation,

<math>~\chi \equiv \frac{b}{a}</math>

      and      

<math>~\upsilon \equiv \frac{c}{a} \, ,</math>

we seek roots of the function,

<math>~f_L</math>

<math>~\equiv</math>

<math>~L^2 - \biggl[ \frac{3^4\cdot 5^4}{2^5} \biggr]^{1/3}\chi^{-4/3} \upsilon^{-4/3}(1 + \chi^2)^{2} \biggl\{[2 - (A_1+A_3)] - \biggl[ 2(1-A_1)-A_3\biggr](1-\chi^2)^{-1} \biggr\} = 0 \, .</math>

As above, we will hold <math>~\upsilon</math> fixed and use the Newton-Raphson technique to identify the corresponding "root" value of <math>~\chi</math>. Hence, we need to specify, not only the function, <math>~f_L</math>, but also its first derivative,

<math>~f_L^'</math>

<math>~\equiv</math>

<math>~\frac{\partial f_L}{\partial \chi} \, .</math>

 

<math>~=</math>

<math>~- \biggl[ \frac{3^4\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \frac{\partial}{\partial \chi} \biggl\{ \chi^{-4/3} (1 + \chi^2)^{2} [2 - (A_1+A_3)] - \chi^{-4/3} (1 + \chi^2)^{2}(1-\chi^2)^{-1}[ 2(1-A_1)-A_3] \biggr\}</math>

 

<math>~=</math>

<math>~- \biggl[ \frac{3^4\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \biggl\{ -\frac{4}{3}\chi^{-7/3} (1 + \chi^2)^{2}[2 - (A_1+A_3)] +4\chi^{-1/3} (1 + \chi^2)[2 - (A_1+A_3)] -\chi^{-4/3} (1 + \chi^2)^{2}(A_1^'+A_3^') </math>

 

 

<math>~ + \frac{4}{3} \chi^{-7/3} (1 + \chi^2)^{2}(1-\chi^2)^{-1}[ 2(1-A_1)-A_3] - 4\chi^{-1/3} (1 + \chi^2)(1-\chi^2)^{-1}[ 2(1-A_1)-A_3] </math>

 

 

<math>~ - 2 \chi^{-1/3} (1 + \chi^2)^{2}(1-\chi^2)^{-2}[ 2(1-A_1)-A_3] - \chi^{-4/3} (1 + \chi^2)^{2}(1-\chi^2)^{-1}[ -2A_1^'-A_3^'] \biggr\}</math>

 

<math>~=</math>

<math>~- \biggl[ \frac{3\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \chi^{-7/3} (1 + \chi^2)\biggl\{ [12\chi^2-4(1 + \chi^2)][2 - (A_1+A_3)] -3\chi (1 + \chi^2)(A_1^'+A_3^') + 3\chi (1 + \chi^2)(1-\chi^2)^{-1}[ 2A_1^' + A_3^'] </math>

 

 

<math>~ + (1-\chi^2)^{-2}\{ 4 (1 + \chi^2)(1-\chi^2)[ 2(1-A_1)-A_3] - 12\chi^{2} (1-\chi^2)[ 2(1-A_1)-A_3] - 6 \chi^{2} (1 + \chi^2)[ 2(1-A_1)-A_3] \} \biggr\} </math>

 

<math>~=</math>

<math>~- \biggl[ \frac{3\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \chi^{-7/3} (1 + \chi^2)\biggl\{ [8\chi^2-4]A_1 + 3\chi (1 + \chi^2)(1-\chi^2)^{-1} [ (1+\chi^2)A_1^' + \chi^2A_3^' ] </math>

 

 

<math>~ + 2(1-\chi^2)^{-2} [ 2-2A_1-A_3] [ (4\chi^2-2)(1-\chi^2)^{2} + 2 (1 + \chi^2)(1-\chi^2) - 6\chi^{2} (1-\chi^2) - 3 \chi^{2} (1 + \chi^2) ] \biggr\} </math>

 

<math>~=</math>

<math>~- \biggl[ \frac{3\cdot 5^4}{2^5} \biggr]^{1/3}\upsilon^{-4/3} \chi^{-7/3} (1 + \chi^2)\biggl\{ 3\chi (1 + \chi^2)(1-\chi^2)^{-1} [ (1+\chi^2)A_1^' + \chi^2A_3^' ] </math>

 

 

<math>~+[8\chi^2-4]A_1 + 2(1-\chi^2)^{-2} [ 2-2A_1-A_3] [ - \chi^2 - 9\chi^4 + 4\chi^6 ] \biggr\} </math>


What values of <math>~L</math> should we choose? In association with our discussion of warped free-energy surfaces, we'd like to specify the eccentricity, <math>~e</math>, of a Maclaurin spheroid and adopt the angular momentum of that configuration. According to our accompanying discussion of the properties of Maclaurin spheroids,

<math>~L_\mathrm{Mac}^2</math>

<math>~=</math>

<math>~2^2a^4\Omega^2</math>

 

<math>~=</math>

<math>~2^3a^4 [ A_1 -A_3(1-e^2)]_\mathrm{Mac} </math>

 

<math>~=</math>

<math>~2^3 \biggl[\frac{3\cdot 5}{2^2}(1-e^2)^{-1/2} \biggr]^{4/3} [ A_1 -A_3(1-e^2)]_\mathrm{Mac} </math>

 

<math>~=</math>

<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} (1-e^2)^{-2/3} \biggl\{ \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr](1-e^2)^{1/2} -\frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{3/2} \biggr\} </math>

 

<math>~=</math>

<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} (1-e^2)^{-2/3} \biggl\{ \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2} +\frac{2}{e^2} \biggl[\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{3/2} -\frac{1}{e^2} \biggl[ (1-e^2)^{1/2} \biggr](1-e^2)^{1/2} -\frac{2}{e^2} \biggl[(1-e^2)^{-1/2} \biggr](1-e^2)^{3/2} \biggr\} </math>

 

<math>~=</math>

<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} (1-e^2)^{-2/3} \biggl\{ \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2} \biggl[3-2e^2\biggr] -\frac{3(1-e^2)}{e^2} \biggr\} </math>

 

<math>~=</math>

<math>~ [2\cdot 3^4\cdot 5^4]^{1/3} \frac{(1-e^2)^{1/3} }{e^2} \biggl\{ \biggl[\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{-1/2} \biggl[3-2e^2\biggr] - 3 \biggr\} \, . </math>

Note, for example, that if <math>~e = 0.85</math>, the square-root of this expression gives, <math>~L_\mathrm{Mac} = 4.7148806</math>, which matches the angular momentum that was used by Christodoulou et al (1995) to generate their Figure 3.

Sequence Plots

Jacobi Sequence: (blue) Points defined by data in Table IV of EFE, Chapter 6, §39 (p. 103); (red) points generated here from above-defined roots of the governing relation. Figure 2 extracted from p. 902 of S. Chandrasekhar (1965)

"The Equilibrium and the Stability of the Riemann Ellipsoids. I"

ApJ, vol. 142, pp. 890-921 © American Astronomical Society

Jacobi Sequence

Chandrasekhar Figure2

  Original figure has been annotated (maroon-colored text and arrow added) for clarification.

Jacobi Sequence

Chandrasekhar Figure2

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation