From VistrailsWiki
Jump to navigation Jump to search

Challenges Constructing Ellipsoidal-Like Configurations (Pt. 2)

This chapter extends the accompanying chapters titled, Construction Challenges (Pt. 1) and (Pt. 2). The focus here is on firming up our understanding of the relationships between various "tilted" Cartesian coordinate frames.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Various Coordinate Frames

Riemann-Derived Expressions

Inertial Frame (green with subscript "0")
and Body Frame (black and unsubscripted).

Inertial and Body Frames

For our chosen Example Type I Ellipsoid, we have, <math>~\Omega_2 = 0.3639</math> and <math>~\Omega_3 = 0.6633</math>, in which case, <math>~\Omega_0 = 0.7566</math> and <math>~\delta = 0.5018 ~\mathrm{rad} = 28.75^\circ</math>.

The purple (ellipsoidal) configuration is spinning with frequency, <math>~\Omega_0</math> about the <math>~z_0</math>-axis of the "inertial frame," as illustrated; that is,



<math>~\boldsymbol{\hat{k}_0}\Omega_0 \, .</math>

Also as illustrated, the "body frame," which is attached to and aligned with the principal axes of the purple ellipsoid, is tilted at an angle, <math>~\delta</math>, with respect to the inertial frame. Hence, as viewed from the body frame, we have,



<math>~\biggl[ \boldsymbol{\hat\jmath }\sin\delta + \boldsymbol{\hat{k} }\cos\delta \biggr]\Omega_0 \, .</math>

Now, adhering to the notation used by [EFE] — see, for example, the first paragraph of §51 (p. 156) — we should write,



<math>~\boldsymbol{\hat\jmath }\Omega_2 + \boldsymbol{\hat{k} }\Omega_3 ~~~~~\Rightarrow ~~~ \Omega_2 = \Omega_0\sin\delta </math>    and,     <math>~\Omega_3 = \Omega_0\cos\delta \, .</math>

This means that,



<math>~ \biggl[\Omega_2^2 + \Omega_3^2 \biggr]^{1 / 2} </math>    and,     <math>~\delta = \tan^{-1}\biggl[ \frac{\Omega_2}{\Omega_3} \biggr] \, .</math>

As we have summarized in an accompanying discussion of Riemann Type 1 ellipsoids, [EFE] provides an expression for the velocity vector of each fluid element, given its instantaneous body-coordinate position (x, y, z) = (x1, x2, x3) — see his Eq. (154), Chapter 7, §51 (p. 156). As viewed from the rotating frame of reference, the three component expressions are,

<math>~\dot{x} = u_1 = \boldsymbol{\hat\imath} \cdot \boldsymbol{u}</math>


<math>~\biggl(\frac{a}{b}\biggr)^2 \gamma \Omega_3 y - \biggl(\frac{a}{c}\biggr)^2 \beta \Omega_2 z</math>


<math>~- \biggl[ \frac{a^2}{a^2 + b^2} \biggr] \zeta_3 y + \biggl[ \frac{a^2}{a^2 + c^2} \biggr] \zeta_2 z \, ,</math>

<math>~\dot{y} = u_2 = \boldsymbol{\hat\jmath} \cdot \boldsymbol{u}</math>


<math>~- \gamma \Omega_3 x</math>


<math>~+\biggl[ \frac{b^2}{a^2 + b^2} \biggr] \zeta_3 x \, ,</math>

<math>~\dot{z} = u_3 = \boldsymbol{\hat{k}} \cdot \boldsymbol{u}</math>


<math>~+ \beta \Omega_2 x</math>


<math>~- \biggl[ \frac{c^2}{a^2 + c^2} \biggr] \zeta_2 x \, ,</math>




<math>~ - \biggl[ \frac{c^2}{a^2 + c^2} \biggr] \frac{\zeta_2}{\Omega_2} </math>




<math>~ - \biggl[ \frac{b^2}{a^2 + b^2} \biggr] \frac{\zeta_3}{\Omega_3} \, . </math>

Rotating-Frame Vorticity

<math>~\boldsymbol{\zeta} \equiv \boldsymbol{\nabla \times}\bold{u}</math>


<math>~ \boldsymbol{\hat\imath} \biggl[ \frac{\partial \dot{z} }{\partial y} - \frac{\partial \dot{y}}{\partial z} \biggr] + \boldsymbol{\hat\jmath} \biggl[ \frac{\partial \dot{x}}{\partial z} - \frac{\partial \dot{z}}{\partial x} \biggr] + \bold{\hat{k}} \biggl[ \frac{\partial \dot{y}}{\partial x} - \frac{\partial \dot{x}}{\partial y} \biggr] </math>



<math>~ \boldsymbol{\hat\jmath} \biggl\{ \biggl[ \frac{a^2}{a^2 + c^2} \biggr] \zeta_2 + \biggl[ \frac{c^2}{a^2 + c^2} \biggr] \zeta_2 \biggr\} + \bold{\hat{k}} \biggl\{ \biggl[ \frac{b^2}{a^2 + b^2} \biggr] \zeta_3 + \biggl[ \frac{a^2}{a^2 + b^2} \biggr] \zeta_3 \biggr\} </math>



<math>~ \boldsymbol{\hat\jmath} ~\zeta_2 + \bold{\hat{k}} ~\zeta_3 \, . </math>

For our chosen Example Type I Ellipsoid, we have, <math>~\zeta_2 = -2.2794</math> and <math>~\Omega_3 = -1.9637</math>, in which case, <math>~\zeta_\mathrm{rot} = (\zeta_2^2 + \zeta_3^2)^{1 / 2} = 2.2794</math> and <math>~\xi \equiv \tan^{-1}[\zeta_2/\zeta_3] = 4.0013 ~\mathrm{rad} = 229.26^\circ</math>.

Vorticity Axis

Tipped Orbit Planes


In a separate discussion, we have shown that, as viewed from a frame that "tumbles" with the (purple) body of a Type 1 Riemann ellipsoid, each Lagrangian fluid element moves along an elliptical path in a plane that is tipped by an angle <math>~\theta</math> about the x-axis of the body. As viewed from the (primed) coordinates associated with this tipped plane, by definition, z' = constant and dz'/dt = 0, and the planar orbit is defined by the expression for an,

Off-Center Ellipse



<math>~\biggl[\frac{x'}{x_\mathrm{max}} \biggr]^2 + \biggl[\frac{y' - y_c(z')}{y_\mathrm{max}} \biggr]^2 \, .</math>

Tipped Orbit Frame (yellow, primed)

Tipped Orbital Planes

Given that b/a = 1.25 and c/a = 0.4703 for our chosen Example Type I Ellipsoid, we find that, <math>~\theta = - 0.3320 ~\mathrm{rad} = -19.02^\circ</math>.

Notice that the offset, <math>~y_c</math>, is a function of the tipped plane's vertical coordinate, <math>~z'</math>. As a function of time, the x'-y' coordinates and associated velocity components of each Lagrangian fluid element are given by the expressions,



<math>~x_\mathrm{max}\cos(\dot\varphi t)</math>


<math>~y' - y_c</math>


<math>~y_\mathrm{max}\sin(\dot\varphi t) \, ,</math>



<math>~- x_\mathrm{max}~ \dot\varphi \cdot \sin(\dot\varphi t) = (y_c - y') \biggl[ \frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr] \dot\varphi </math>


<math>~\dot{y}' </math>


<math>~y_\mathrm{max}~\dot\varphi \cdot \cos(\dot\varphi t) = x' \biggl[ \frac{y_\mathrm{max}}{x_\mathrm{max}}\biggr] \dot\varphi \, .</math>

As has been summarized in an accompanying discussion, we have determined that (numerical value given for our chosen example Type I ellipsoid),



<math>~ - \frac{\zeta_2}{\zeta_3} \biggl[ \frac{a^2 + b^2}{a^2 + c^2} \biggr] \frac{c^2}{b^2} = - \frac{\beta \Omega_2}{\gamma \Omega_3} = -0.34479\, , </math>

where, <math>~\beta</math> and <math>~\gamma</math> are as defined above. Also,

<math>~\biggl[\frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr]^2</math>


<math>~ \frac{a^2}{b^2 c^2} (c^2\cos^2\theta + b^2\sin^2\theta) = 1.05238 \, , </math>

<math>~{\dot\varphi}^2 </math>


<math>~ \zeta_3^2\biggl[ \frac{b^2}{a^2 + b^2} \biggr]^2 \biggl[ \frac{x_\mathrm{max}}{y_\mathrm{max}} \biggr]^2 \biggl[1 + \tan^2\theta \biggr] = 1.68818\, , </math>



<math>~- \frac{z' b^2 \sin\theta\cos\theta}{c^2 \cos^2\theta + b^2\sin^2\theta} = -z' \sin\theta \cos\theta \biggl[\frac{y_\mathrm{max}}{x_\mathrm{max}} \biggr]^2 \frac{a^2}{c^2} = z' \cos\theta (1.40038) \, .</math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) publication,