Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/Challenges"

From VistrailsWiki
Jump to navigation Jump to search
Line 40: Line 40:
</table>
</table>


While we will fundamentally rely on the <math>~(\Omega_f, \lambda)</math> parameter pair to define the velocity flow-field, in discussions of Riemann S-type ellipsoids it is customary to also refer to the following two additional parameters:  The vorticity,
While we will fundamentally rely on the <math>~(\Omega_f, \lambda)</math> parameter pair to define the velocity flow-field, in discussions of Riemann S-type ellipsoids it is customary to also refer to the following two additional parameters:  The (rotating-frame) vorticity,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 71: Line 71:
</tr>
</tr>
</table>
</table>
 
and the dimensionless frequency ratio,
and the dimensionless ratio,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">



Revision as of 22:02, 11 September 2020

Challenges Constructing Ellipsoidal-Like Configurations

First, let's review the three different approaches that we have described for constructing Riemann S-type ellipsoids. Then let's see how these relate to the technique that has been used to construct infinitesimally thin, nonaxisymmetric disks.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Riemann S-type Ellipsoids

Usually, the density, <math>~\rho</math>, and the pair of axis ratios, <math>~b/a</math> and <math>~c/a</math>, are specified. Then, the Poisson equation is solved to obtain <math>~\Phi_\mathrm{grav}</math> in terms of <math>~A_1</math>, <math>~A_2</math>, and <math>~A_3</math>. The aim, then, is to determine the value of the central enthalpy, <math>~H_0</math> — alternatively, the thermal energy density, <math>~\Pi</math> — and the two parameters, <math>~\Omega_f</math> and <math>~\lambda</math>, that determine the magnitude of the velocity flow-field. Keep in mind that, as viewed from a frame of reference that is spinning with the ellipsoid (at angular frequency, <math>~\Omega_f</math>), the adopted (rotating-frame) velocity field is,

<math>~\bold{u}</math>

<math>~=</math>

<math>~\lambda \biggl[ \boldsymbol{\hat\imath} \biggl( \frac{a}{b}\biggr) y - \boldsymbol{\hat\jmath} \biggl( \frac{b}{a} \biggr) x \biggr] \, .</math>

Hence, the inertial-frame velocity is given by the expression,

<math>~\bold{v}</math>

<math>~=</math>

<math>~\bold{u} + \bold{\hat{e}}_\varphi \Omega_f \varpi \, .</math>

While we will fundamentally rely on the <math>~(\Omega_f, \lambda)</math> parameter pair to define the velocity flow-field, in discussions of Riemann S-type ellipsoids it is customary to also refer to the following two additional parameters: The (rotating-frame) vorticity,

<math>~\boldsymbol{\zeta} \equiv \boldsymbol{\nabla \times}\bold{u}</math>

<math>~=</math>

<math>~ \boldsymbol{\hat\imath} \biggl[ \frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z} \biggr] + \boldsymbol{\hat\jmath} \biggl[ \frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x} \biggr] + \bold{\hat{k}} \biggl[ \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \biggr] </math>

 

<math>~=</math>

<math>~\bold{\hat{k}} \biggl[ - \lambda \biggl(\frac{b}{a} + \frac{a}{b}\biggr) \biggr] \, ;</math>

and the dimensionless frequency ratio,

<math>~f</math>

<math>~\equiv</math>

<math>~\frac{ \zeta}{\Omega_f} \, .</math>


2nd-Order TVE Expressions

As we have discussed in detail in an accompanying chapter, the three diagonal elements of the <math>~(3 \times 3)</math> 2nd-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>.


Indices 2nd-Order TVE Expressions that are Relevant to Riemann S-Type Ellipsoids
<math>~i</math> <math>~j</math>
<math>~1</math> <math>~1</math>

<math>~0</math>

<math>~=</math>

<math>~ \biggl[ \frac{3\cdot 5}{2^2\pi a b c\rho} \biggr] \Pi +\biggl\{ \Omega_3^2 + 2 \biggl[ \frac{b^2}{b^2+a^2}\biggr] \Omega_3 \zeta_3 ~-~(2\pi G\rho) A_1 \biggr\} a^2 + \biggl[ \frac{a^2}{a^2 + b^2}\biggr]^2 \zeta_3^2 b^2 </math>

<math>~2</math> <math>~2</math>

<math>~0</math>

<math>~=</math>

<math>~ \biggl[ \frac{3\cdot 5}{2^2\pi a b c \rho} \biggr]\Pi + \biggl[ \frac{b^2}{b^2+a^2}\biggr]^2 \zeta_3^2 a^2 + \biggl\{ \Omega_3^2 + 2 \biggl[ \frac{a^2}{a^2 + b^2}\biggr] \Omega_3 \zeta_3 ~-~( 2\pi G \rho) A_2 \biggr\}b^2 </math>

<math>~3</math> <math>~3</math>

<math>~0</math>

<math>~=</math>

<math>~ \biggl[ \frac{3\cdot 5}{2^2\pi abc\rho} \biggr]\Pi - (2\pi G \rho)A_3 c^2 </math>


The <math>~(i, j) = (3, 3)</math> element gives <math>~\Pi</math> directly in terms of known parameters. The <math>~(1, 1)</math> and <math>~(2, 2)</math> elements can then be combined in a couple of different ways to obtain a coupled set of expressions that define <math>~\Omega_3</math> and <math>~f \equiv \zeta_3/\Omega_3</math>.


<math>~\biggl[ \frac{b^2 a^2}{b^2+a^2}\biggr] f \Omega_3^2 </math>

<math>~=</math>

<math>~ \pi G\rho \biggl[ \frac{(A_1 - A_2)a^2b^2}{ b^2 - a^2} - A_3 c^2\biggr] \, ; </math>

[ EFE, Chapter 7, §48, Eq. (34) ]

and,

<math>~ \Omega_3^2 \biggl\{1 + \biggl[ \frac{a^2b^2}{(a^2 + b^2)^2}\biggr] f^2 \biggr\} </math>

<math>~=</math>

<math>~ \frac{2\pi G\rho}{ (a^2-b^2) } \biggl[ A_1 a^2 - A_2 b^2 \biggr] \, . </math>

[ EFE, Chapter 7, §48, Eq. (33) ]

Compressible Structures

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation