Difference between revisions of "User:Tohline/SphericallySymmetricConfigurations/Virial"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Quartic Solution: Amplify result of derivation)
 
(180 intermediate revisions by the same user not shown)
Line 1: Line 1:
__FORCETOC__
__FORCETOC__
=Virial Equilibrium of Spherically Symmetric Configurations=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
==Free Energy Expression==
===Review===
As has been [[User:Tohline/VE#Free_Energy_Expression|introduced elsewhere in a more general context]], associated with any isolated, self-gravitating, gaseous configuration we can identify a total Gibbs-like free energy, <math>\mathfrak{G}</math>, given by the sum of the relevant contributions to the total energy of the configuration,
<div align="center">
<math>
\mathfrak{G} = W_\mathrm{grav} + \mathfrak{S}_\mathrm{therm} + T_\mathrm{kin} + P_e V + \cdots
</math>
</div>
Here, we have explicitly included the gravitational potential energy, <math>~W_\mathrm{grav}</math>, the ordered kinetic energy, <math>~T_\mathrm{kin}</math>, a term that accounts for surface effects if the configuration of volume <math>~V</math> is embedded in an external medium of pressure <math>~P_e,</math> and <math>~\mathfrak{S}_\mathrm{therm}</math>, the reservoir of thermodynamic energy that is available to perform work as the system expands or contracts.  A mathematical expression encapsulating the physical definition of each of these energy terms, in full three-dimensional generality, [[User:Tohline/VE#Free_Energy_Expression|can be found in our introductory discussion]] of the scalar virial theorem and the free-energy function. 


=Virial Equilibrium=
===Expressions for Various Energy Terms===
 
We begin, here, by deriving an expression for each of the terms in the free-energy function as appropriate for spherically symmetric systems.  In deriving each expression, we keep in mind two issues:  First, for a given size system a determination of each term's total contribution to the free energy generally will involve integration through the entire volume of the configuration, effectively "summing up" the differential mass in each radial shell,
==Free Energy Expression (review)==
As has been [[User:Tohline/VE|explained elsewhere]],
associated with any self-gravitating, gaseous configuration we can identify a total "Gibbs-like" free energy, <math>\mathfrak{G}</math>, given by the sum of the relevant contributions to the total energy of the configuration,
<div align="center">
<div align="center">
<math>
<math>
\mathfrak{G} = W + U + T_\mathrm{rot} + P_e V + \cdots \, ,
dm = \rho(\vec{x}) d^3x = 4\pi \rho(r) r^2 dr \, ,
</math>
</math>
</div>  
</div>
where, for the purposes of this discussion, we have explicitly included the gravitational potential energy, <math>W</math>, the total internal energy, <math>U</math>, the rotational kinetic energy, <math>T_\mathrm{rot}</math>, and a term that accounts for surface effects if the configuration of volume <math>V</math> is embedded in an external medium of pressure <math>P_e</math>.  For spherically symmetric configurations that have a uniform density and are uniformly rotating, each of the terms contributing to this free-energy expression can be written as a product of a scalar coefficient and a function of the configuration's radius, <math>R</math>, as follows:  
weighted by some specific energy expression.  Second, each term must be formulated in such a way that it is clear how the energy contribution depends on the overall system size.
 
====Volume Integrals====
We note, first, that the mass enclosed within each interior radius, <math>~r</math>, is
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~M_r(r) = \int\limits_V dm</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \int_0^r  4\pi r^2 \rho dr  \, .</math>
  </td>
</tr>
</table>
</div>
Hence, if the volume of the configuration extends out to a radius denoted by <math>~R_\mathrm{limit}</math>, the configuration mass is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~M_\mathrm{limit}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \int_0^{R_\mathrm{limit}}  4\pi r^2 \rho dr  \, .</math>
  </td>
</tr>
</table>
</div>
 
<table align="center" border="1" width="65%" cellpadding="8">
<tr><td align="left">
NOTE:  The following considerations have led us to formally draw a distinction between <math>~M_\mathrm{limit}</math> and the "total" mass, <math>~M_\mathrm{tot}</math>, that we use (see below) for normalization. 
 
<font color="maroon"><b>Isolated Polytropes</b></font>:  For [[User:Tohline/SSC/Virial/Polytropes#Isolated_Nonrotating_Adiabatic_Configuration|isolated polytropes]], the limit of integration, <math>~R_\mathrm{limit}</math>, will be the natural edge of the configuration, where the pressure and mass-density drop to zero.  In this case, <math>~M_\mathrm{limit}</math> quite naturally corresponds to the total mass of the configuration. 
 
<font color="maroon"><b>Pressure-Truncated Polytropes</b></font>:  But, a [[User:Tohline/SSC/Virial/Polytropes#Nonrotating_Adiabatic_Configuration_Embedded_in_an_External_Medium|configuration embedded in an external medium]] of pressure, <math>~P_e</math>, will have a (pressure-truncated) surface whose radius, <math>~R_\mathrm{limit}</math>, corresponds to the radial location at which the configuration's internal pressure drops to a value that equals <math>~P_e</math>. In this case as well, one might choose to refer to <math>~M_\mathrm{limit}</math> as the total mass; on the other hand, it might be more useful to distinguish <math>~M_\mathrm{limit}</math> from <math>~M_\mathrm{tot}</math>, continuing to rely on <math>~M_\mathrm{tot}</math> to represent the mass of the corresponding ''isolated'' polytrope. 
 
<font color="maroon"><b>BiPolytropes</b></font>:  When discussing [[User:Tohline/SSC/BipolytropeGeneralization_Version2#Bipolytrope_Generalization|bipolytropes]], the limit of integration, <math>~R_\mathrm{limit}</math>, will naturally refer to the radial location that defines the outer edge of the configuration's "core" and, at the same time, identifies the radial "interface" between the bipolytrope's core and its envelope.  In this case, <math>~M_\mathrm{limit}</math> corresponds to the mass of the core rather than to the total mass of the bipolytropic configuration.
</td></tr>
</table>
 
 
<font color="red">Confinement by External Pressure:</font> For spherically symmetric configurations, the energy term due to confinement by an external pressure can be expressed, simply, in terms of the configuration's radius, <math>~R_\mathrm{limit}</math>, as,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_e V</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~P_e \int_0^{R_\mathrm{limit}}  4\pi r^2 dr  = \frac{4\pi}{3} P_e R_\mathrm{limit}^3 \, .</math>
 
  </td>
</tr>
</table>
</div>
 
<font color="red">Gravitational Potential Energy:</font>  From our discussion of the [[User:Tohline/VE#Scalar_Virial_Theorem|scalar virial theorem]] &#8212; see, specifically, the reference to Equation (18), on p. 18 of [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>] &#8212; the gravitational potential energy is given by the expression,
<div align="center">
<div align="center">
<math>
<math>
\mathfrak{G} = -A\biggl( \frac{R}{R_0} \biggr)^{-1} +~ (1-\delta_{1\gamma_g})B\biggl( \frac{R}{R_0} \biggr)^{-3(\gamma_g-1)} -~ \delta_{1\gamma_g} B_I \ln \biggl( \frac{R}{R_0} \biggr) +~ C \biggl( \frac{R}{R_0} \biggr)^{-2} +~ D\biggl( \frac{R}{R_0} \biggr)^3 \, ,
W_\mathrm{grav} = - \int\limits_V \rho x_i \frac{\partial\Phi}{\partial x_i} d^3 x
= - \int\limits_V \vec{r} \cdot \nabla\Phi dm = - \int_0^{R_\mathrm{limit}} \biggl( r \frac{d\Phi}{dr} \biggr) dm \, .
</math>
</math>
</div>
</div>
where, <math>R_0</math> is an, as yet unspecified, scale length,
For spherically symmetric systems, the
 
<div align="center">
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
 
{{User:Tohline/Math/EQ_Poisson01}}
</div>
becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{1}{r^2} \frac{d}{dr} \biggl( r^2 \frac{d\Phi}{dr} \biggr) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi G \rho(r) \, , </math>
  </td>
</tr>
</table>
</div>
which implies,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~r^2 \frac{d\Phi}{dr} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\int_0^r 4\pi G \rho(r) r^2 dr = GM_r(r) \, .</math>
  </td>
</tr>
</table>
</div>
<span id="Wgrav">Hence</span> &#8212; see, also, p. 64, Equation (12) of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] &#8212; the desired expression for the gravitational potential energy is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~W_\mathrm{grav}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ - \int_0^{R_\mathrm{limit}} \biggl( \frac{GM_r}{r} \biggr) dm = - \int_0^{R_\mathrm{limit}} \frac{G}{r}\biggl[\int_0^r 4\pi r^2 \rho dr \biggr] 4\pi r^2 \rho dr \, .</math>
  </td>
</tr>
</table>
</div>
 
 
<div id="AlternateGravPotEnergy">
<table border="1" align="center" width="90%" cellpadding="20">
<tr><td align="left">
Also, as pointed out by [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] &#8212; see p. 64, Equation (16) &#8212; it may sometimes prove advantageous to recognize that, if a spherically symmetric system is in hydrostatic balance, an alternate expression for the total gravitational potential energy is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5">
<table border="0" cellpadding="5">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>A</math>
<math>~W_\mathrm{grav}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ + \frac{1}{2} \int_0^{R_\mathrm{limit}} \Phi(r) dm \, .</math>
  </td>
</tr>
</table>
</div>
</td></tr>
</table>
</div>
 
 
<div>
<font color="red">Rotational Kinetic Energy:</font>  We will also consider a system that is rotating with a specified [[User:Tohline/AxisymmetricConfigurations/SolutionStrategies#Simple_Rotation_Profile_and_Centrifugal_Potential|''simple'' angular velocity profile]], <math>~\dot\varphi(\varpi)</math>, in which case, from our discussion of the [[User:Tohline/VE#Scalar_Virial_Theorem|scalar virial theorem]] &#8212; see, specifically, the reference to Equation (8), on p. 16 of [[User:Tohline/Appendix/References#EFE|EFE]] &#8212; the (ordered) kinetic energy,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~T_\mathrm{kin}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{3}{5} \frac{GM^2}{R_0} \, ,</math>
<math>~ \frac{1}{2} \int\limits_V \rho |\vec{v} |^2 d^3x = \frac{1}{2} \int\limits_V |\vec{v} |^2 dm  \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
is entirely rotational kinetic energy, specifically,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>B</math>
<math>~T_\mathrm{kin} = T_\mathrm{rot}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ \frac{1}{2} \int\int\int \dot\varphi^2 \varpi^2 dm
= \frac{1}{2} \int_0^{R_\mathrm{limit}} \dot\varphi^2 \varpi^2  \int_{-\sqrt{{R_\mathrm{limit}}^2 - \varpi^2}}^{\sqrt{{R_\mathrm{limit}}^2 - \varpi^2}}  \rho(r(\varpi,z)) 2\pi \varpi d\varpi dz\, .</math>
  </td>
</tr>
</table>
</div>
<font color="red">Reservoir of Thermodynamic Energy:</font>  As has been explained in [[User:Tohline/VE#Reservoir_of_Thermodynamic_Energy|our introductory discussion of the Gibbs-like free energy]], formulation of an expression for the reservoir of thermodynamic energy, <math>~\mathfrak{S}_\mathrm{therm}</math>, depends on whether the system is expected to evolve adiabatically or isothermally.  For [[User:Tohline/VE#Isothermal_Systems|isothermal systems]],
<div align="center" id="Reservoir">
<math>
<math>
\biggl[ \frac{K}{(\gamma_g-1)} \biggl( \frac{3}{4\pi R_0^3} \biggr)^{\gamma_g - 1} \biggr] M^{\gamma_g} \, ,
\mathfrak{S}_\mathrm{therm} ~~\rightarrow ~~\mathfrak{S}_I
= + \int\limits_V c_s^2  \ln \biggl(\frac{\rho}{\rho_\mathrm{norm}}\biggr) dm
= c_s^2  \int_0^{R_\mathrm{limit}} \ln \biggl(\frac{\rho}{\rho_\mathrm{norm}}\biggr) 4\pi r^2 \rho dr \, ,
</math>
</math>
</div>
where, <math>~c_s</math> is the isothermal sound speed and <math>~\rho_\mathrm{norm}</math> is a (as yet unspecified) reference mass density; while, for [[User:Tohline/VE#Adiabatic_Systems|adiabatic systems]],
<div align="center">
<math>
\mathfrak{S}_\mathrm{therm} ~~\rightarrow ~~ \mathfrak{S}_A
= + \int\limits_V  \frac{1}{({\gamma_g}-1)} \biggl( \frac{P}{\rho} \biggr) dm
= \frac{1}{({\gamma_g}-1)}  \int_0^{R_\mathrm{limit}}  4\pi r^2 P dr
\, ,</math>
</div>
where, <math>~P(r)</math> is the system's pressure distribution and <math>~\gamma_g</math> is the specified adiabatic index.
====Normalizations====
=====Our Choices=====
It is appropriate for us to define some characteristic scales against which various physical parameters can be normalized &#8212; and, hence, their relative significance can be specified or measured &#8212; as the free energy of various systems is examined.  As the system size is varied in search of extrema in the free energy, we generally will hold constant the total system mass and the specific entropy of each fluid element.  (When isothermal rather than adiabatic variations are considered, the sound speed rather than the specific entropy will be held constant.)  Hence, following the lead of both [http://adsabs.harvard.edu/abs/1970MNRAS.151...81H Horedt (1970)] and [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth (1981)], we will express the various characteristic scales in terms of the constants, <math>~G, M_\mathrm{tot},</math> and the polytropic constant, <math>~K.</math>  Specifically, we will normalize all length scales, pressures, energies, mass densities, and the square of the speed of sound by, respectively,
<div align="center">
<table border="1" align="center" cellpadding="5">
<tr><th align="center" colspan="2">
Adopted Normalizations
</th></tr>
<tr>
  <td align="center">
Adiabatic Cases
  </td>
  <td align="center">
Isothermal Case
<math>~(\gamma = 1; K = c_s^2)</math>
   </td>
   </td>
</tr>
</tr>
<tr><td align="center">


<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>B_I</math>
<math>~R_\mathrm{norm}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>\equiv</math>
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl[ \biggl( \frac{G}{K} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr]^{1/(4-3\gamma)} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~P_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{K^4}{G^{3\gamma} M_\mathrm{tot}^{2\gamma}} \biggr]^{1/(4-3\gamma)}  </math>
  </td>
</tr>
 
<tr>
  <td align="center" colspan="3">
----
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~E_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ P_\mathrm{norm} R_\mathrm{norm}^3 =
\biggl[ KG^{3(1-\gamma)}M_\mathrm{tot}^{6-5\gamma} \biggr]^{1/(4-3\gamma)} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\rho_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{3M_\mathrm{tot}}{4\pi R_\mathrm{norm}^3}
= \frac{3}{4\pi} \biggl[ \frac{K^3}{G^3 M_\mathrm{tot}^2} \biggr]^{1/(4-3\gamma )}  </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~c^2_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{P_\mathrm{norm}}{\rho_\mathrm{norm}}
= \frac{4\pi}{3} \biggl[ \frac{K}{(G^3 M_\mathrm{tot}^2)^{\gamma-1}} \biggr]^{1/(4-3\gamma )}  </math>
  </td>
</tr>
</table>
 
</td>
 
<td align="center">
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~R_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{G M_\mathrm{tot}}{c_s^2}  </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~P_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{c_s^8}{G^{3} M_\mathrm{tot}^{2}}  </math>
  </td>
</tr>
 
<tr>
  <td align="center" colspan="3">
----
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~E_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ M_\mathrm{tot} c_s^2 </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\rho_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
3c_s^2 M =3 KM \, ,
\frac{3}{4\pi} \biggl[ \frac{c_s^6}{G^3 M_\mathrm{tot}^2} \biggr]  </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~c^2_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{4\pi}{3} \biggr) c_s^2 </math>
  </td>
</tr>
</table>
 
</td>
</tr>
 
<tr><th align="left" colspan="2">
Note that, given the above definitions, the following relations hold:
<div align="center">
<math>~E_\mathrm{norm} = P_\mathrm{norm} R_\mathrm{norm}^3 = \frac{G M_\mathrm{tot}^2}{ R_\mathrm{norm}}
= \biggl( \frac{3}{4\pi} \biggr) M_\mathrm{tot} c_\mathrm{norm}^2</math>
</div>
</th></tr>
</table>
</div>
 
It should be emphasized that, as we discuss how a configuration's free energy varies with its size, the variable <math>~R_\mathrm{limit}</math> will be used to identify the configuration's size ''whether or not the system is in equilibrium,''  and the parameter,
<div align="center">
<math>~\chi \equiv \frac{R_\mathrm{limit}}{R_\mathrm{norm}} \, ,</math>
</div>
will be used to identify the size as referenced to <math>~R_\mathrm{norm}</math>.  When an equilibrium configuration is identified <math>~(R_\mathrm{limit} \rightarrow R_\mathrm{eq})</math>, we will affix the subscript "eq," specifically,
<div align="center">
<math>~\chi_\mathrm{eq} \equiv \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \, .</math>
</div>
 
=====Choices Made by Other Researchers=====
 
As is detailed in a [[User:Tohline/SSC/Structure/PolytropesEmbedded#General_Properties|related discussion]], our definitions of <math>~R_\mathrm{norm}</math> and <math>~P_\mathrm{norm}</math> are close, but not identical, to the scalings adopted by [http://adsabs.harvard.edu/abs/1970MNRAS.151...81H Horedt (1970)] and by  [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth (1981)]. The following relations can be used to switch from our normalizations to theirs:
<div align="center">
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="center">
 
<table border="0" cellpadding="5" align="center">
<tr><th colspan="3" align="center">[[User:Tohline/SSC/Structure/PolytropesEmbedded#Horedt.27s_Presentation|Hoerdt's (1970)]] Normalization</th><tr>
 
<tr>
  <td align="right">
<math>~\biggl( \frac{R_\mathrm{Hoerdt}}{R_\mathrm{norm}} \biggr)^{4-3\gamma}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{(\gamma-1)}{\gamma} \biggl( 4\pi \biggr)^{\gamma-1}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\biggl( \frac{P_\mathrm{Hoerdt}}{P_\mathrm{norm}} \biggr)^{4-3\gamma}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl[\frac{\gamma}{(\gamma-1)} \biggr]^{3\gamma} \biggl( \frac{1}{4\pi} \biggr)^{\gamma}</math>
  </td>
</tr>
</table>
 
  </td>
  <td align="center">
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
  </td>
  <td align="center">
 
<table border="0" cellpadding="5" align="center">
<tr><th colspan="3" align="center">[[User:Tohline/SSC/Structure/PolytropesEmbedded#Whitworth.27s_Presentation|Whitworth's (1981)]] Normalization</th><tr>
 
<tr>
  <td align="right">
<math>~\biggl( \frac{R_\mathrm{rf}}{R_\mathrm{norm}} \biggr)^{4-3\gamma}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{1}{5\pi} \biggl( \frac{4\pi}{3} \biggr)^\gamma</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\biggl( \frac{P_\mathrm{rf}}{P_\mathrm{norm}} \biggr)^{4-3\gamma}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ 2^{-2(4+\gamma)} \biggl( \frac{3^4 \cdot 5^3}{\pi} \biggr)^\gamma</math>
  </td>
</tr>
</table>
 
  </td>
</tr>
</table>
</div>
 
It is also worth noting how the length-scale normalization that we are adopting here relates to the characteristic length scale,
<div align="center">
<math>~a_n \equiv \biggl[ \frac{1}{4\pi G} \biggl( \frac{H_c}{\rho_c} \biggr) \biggr]^{1/2} \, ,</math>
</div>
that has classically been adopted in the context of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_Equation|Lane-Emden equation]], the solution of which provides a detailed description of the internal structure of spherical polytropes for a wide range of values of the polytropic index, <math>~n</math>. 
Recognizing that, via the [[User:Tohline/SR#Barotropic_Structure|polytropic equation of state]], the pressure, density, and enthalpy of every element of fluid are related to one another via the expressions,
<div align="center">
<math>~H\rho = (n+1)P</math> &nbsp;&nbsp;&nbsp;&nbsp;&hellip; and
&hellip; &nbsp;&nbsp;&nbsp;&nbsp; <math>P = K\rho^{1+1/n} \, ,</math>
</div>
the specific enthalpy at the center of a polytropic sphere, <math>~H_c/\rho_c</math>, can be rewritten in terms of <math>~K</math> and <math>~\rho_c</math> to give,
<div align="center">
<math>~a_n = \biggl[ \frac{(n+1)K}{4\pi G} \rho_c^{(1/n) -1} \biggr]^{1/2} \, ,</math>
</div>
which is the definition of this classical length scale introduced by [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] (see, specifically, his equation 10 on p. 87).  Switching from <math>~n</math> to the associated adiabatic exponent via the relation, <math>~\gamma = 1+1/n ~~~\Rightarrow~~~ n = 1/(\gamma-1)</math>, we see that,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a_n}{R_\mathrm{norm}} \biggr)^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{\gamma}{\gamma-1} \biggr) \frac{K \rho_c^{(\gamma-2)}}{4\pi G}  \cdot \frac{1}{R_\mathrm{norm}^2}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{4\pi}\biggl( \frac{\gamma}{\gamma-1} \biggr) \frac{K }{G}  \biggl( \frac{\rho_c}{\bar\rho} \biggr)^{(\gamma-2)}
\biggl( \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr)^{(\gamma-2)}
\cdot \frac{1}{R_\mathrm{norm}^2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{3}{4\pi } \cdot \frac{\rho_c}{\bar\rho} \biggr)^{\gamma-2}
\biggl[ \frac{K M_\mathrm{tot}^{\gamma-2} }{G}  \biggr]
\biggl( \frac{R_\mathrm{norm}}{R_\mathrm{eq}} \biggr)^{3{(\gamma-2)}}
\cdot \frac{1}{R_\mathrm{norm}^{3\gamma-4}}
</math>
</math>
   </td>
   </td>
Line 63: Line 555:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>C</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{3}{4\pi } \cdot \frac{\rho_c}{\bar\rho} \biggr)^{2-\gamma}
\frac{5J^2}{4MR_0^2} \, ,
\chi_\mathrm{eq}^{6-3\gamma}
\biggl[ \frac{K M_\mathrm{tot}^{\gamma-2} }{G} \biggr] 
\cdot \biggl[ \biggl( \frac{G}{K} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr]
</math>
</math>
   </td>
   </td>
Line 77: Line 571:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>D</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{3}{4\pi } \cdot \frac{\rho_c}{\bar\rho} \biggr)^{2-\gamma}
\frac{4}{3} \pi R_0^3 P_e \, .
\chi_\mathrm{eq}^{6-3\gamma} \, .
</math>
</math>
   </td>
   </td>
Line 90: Line 584:
</table>
</table>
</div>
</div>
As written here, the coefficient <math>B</math> that appears in the definition of the configuration's total internal energy comes from assuming that the configuration will expand or contract adiabatically, that is, that internally the pressure scales with density as,
 
Notice that, written in this manner, the scale length, <math>~a_n</math>, cannot actually be determined unless the normalized equilibrium radius, <math>~\chi_\mathrm{eq}</math>, is known.  We will encounter analogous situations whenever the free energy function is used to identify the physical parameters that define equilibrium configurations &#8212; key attributes of a system that should be held fixed as the system size (or some other order parameter) is varied cannot actually be evaluated until an extremum in the free energy is identified and the corresponding value of <math>~\chi_\mathrm{eq}</math> is known.  Because solutions of the Lane-Emden equation directly provide detailed force-balance models of polytropic spheres, [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] did not encounter this issue.  As we have [[User:Tohline/SSC/Structure/Polytropes#Known_Analytic_Solutions|discussed elsewhere]], the equilibrium radius of a polytropic sphere is identified as the radial location,  
<div align="center">
<div align="center">
<math>P = K \rho^{\gamma_g} \, ,</math>  
<math>~\xi_1 = \frac{R_\mathrm{eq}}{a_n} \, ,</math>
</div>
</div>
where <math>K</math> specifies the specific entropy of the gas and {{User:Tohline/Math/MP_AdiabaticIndex}} <math>\ne 1</math> is the ratio of specific heats.  (Note that the Kroniker delta function <math>\delta_{1\gamma_g} = 0</math>, since <math>\gamma_g \ne 1</math>.) If  compressions/expansions occur isothermally (<math>\gamma_g = 1</math>, hence, <math>\delta_{1\gamma_g} = 1</math>), the relevant <math>P-\rho</math> relationship is,
at which the Lane-Emden function, <math>~\Theta_H(\xi)</math>, first goes to zeroBypassing the free-energy analysis and using knowledge of <math>~\xi_1</math> to identify the equilibrium radius &#8212; specifically, setting,
<div align="center">
<div align="center">
<math>P = K\rho = c_s^2 \rho \, .</math>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\chi_\mathrm{eq}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{R_\mathrm{eq}}{R_\mathrm{norm}} = \xi_1 \biggl(\frac{a_n}{R_\mathrm{norm}} \biggr) \, ,</math>
  </td>
</tr>
</table>
</div>
</div>
Once the pressure exerted by the external medium (<math>P_e</math>), and the configuration's mass (<math>M</math>), angular momentum (<math>J</math>), and specific entropy (via <math>K</math>) &#8212; or, in the isothermal case, sound speed (<math>c_s</math>) &#8212;  have been specified, the values of all of the coefficients are known and this algebraic expression for <math>\mathfrak{G}</math> describes how the free energy of the configuration will vary with the configuration's size (<math>R</math>) for a given choice of <math>\gamma_g</math>.


==Visual Representation==
we can extend the above analysis to obtain,
<div align="center">
<div align="center">
<table border="2" cellpadding="8">
<table border="0" cellpadding="5" align="center">
 
<tr>
<tr>
   <td align="center" colspan="2">
   <td align="right">
'''Figure 1:''' <font color="darkblue">Free Energy Surface </font>  
<math>~\biggl( \frac{a_n}{R_\mathrm{norm}} \biggr)^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{4\pi }{3} \cdot \frac{\rho_c}{\bar\rho} \biggr)^{2-\gamma}
\biggl[ \xi_1 \biggl(\frac{a_n}{R_\mathrm{norm}} \biggr) \biggr]^{6-3\gamma}
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td valign="top" width=450>
   <td align="right">
This segment of the free energy "surface" shows how the free energy varies as the size of the configuration and the applied external pressure are varied, while all other relevant physical attributes are held fixed.
<math>\Rightarrow~~~~~\biggl( \frac{a_n}{R_\mathrm{norm}} \biggr)^{4-3\gamma}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi \biggl( \frac{\gamma-1}{\gamma} \biggr) \biggl( \frac{4\pi }{3} \cdot \frac{\rho_c}{\bar\rho} \cdot \xi_1^3\biggr)^{\gamma-2}
\, .
</math>
  </td>
</tr>
</table>
</div>


The plotted function &#8212; derived from the above expression for <math>\mathfrak{G}</math>, with <math>\gamma_\mathrm{g} = 1</math> and <math>C=0</math> (see [[User:Tohline/SphericallySymmetricConfigurations/Virial#Bounded_Isothermal|further discussion]], below) &#8212; is, specifically,
====Implementation====
=====Normalize=====
We will now judiciously introduce our adopted normalizations into the [[User:Tohline/SphericallySymmetricConfigurations/Virial#Expressions_for_Various_Energy_Terms|above-defined free-energy term expressions]], using asterisks to denote dimensionless variables that have been accordingly normalized; for example,  
<div align="center">
<div align="center">
<font size="-1">
<math>
<math>
\frac{\mathfrak{G}}{3Mc_s^2} = 3000\biggl[ - \frac{1}{\chi} - \ln\chi + \frac{\Pi}{3}\chi^3 + 0.9558 \biggr] \, .
r^* \equiv \frac{r}{R_\mathrm{norm}} \, , ~~~~~~ P^* \equiv \frac{P}{P_\mathrm{norm}} \, , ~~~~~~ </math>
&nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; <math>\rho^* \equiv \frac{\rho}{\rho_\mathrm{norm}} \, .
</math>
</math>
</font>
</div>
</div>
As shown, the size of the configuration <math>(\chi)</math> increases to the right from <math>1.2</math> to <math>1.51</math>; the dimensionless external pressure <math>(\Pi)</math> increases into the screen from <math>0.103</math> to <math>0.104</math>; and the dimensionless free energy, <math>\mathfrak{G}/(3Mc_s^2)</math>, increases upward.
 
</td>
<font color="red">Normalized Mass:</font>
   <td align="center" bgcolor="black">
<div align="center">
[[File:3DFreeEnergy.jpg|400px|center|Free Energy Surface]]
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~M_r(r^*) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
   <td align="left">
<math>
R_\mathrm{norm}^3 \rho_\mathrm{norm} \int_0^{r^*}  4\pi (r^*)^2 \rho^* dr^*
= M_\mathrm{tot} \int_0^{r^*}  3(r^*)^2 \rho^* dr^*  \, .
</math>
   </td>
   </td>
</tr>
</tr>
Line 129: Line 671:
</div>
</div>


==Energy Extrema==
<font color="red">Confinement by External Pressure (Normalized Volume):</font> 
As is illustrated in [[User:Tohline/SphericallySymmetricConfigurations/Virial#Visual_Representation|Figure 1]], the free energy surface generally will exhibit multiple local minima and local maxima, and may also possess one or more points of inflection. The locations along the energy surface where these special points arise identify equilibrium states, and the associated values of <math>(R/R_0)_\mathrm{eq}</math> give the radii of the equilibrium configurations. 
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_e V</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~E_\mathrm{norm} \biggl[ \frac{4\pi}{3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)  
\biggl(\frac{R_\mathrm{limit}}{R_\mathrm{norm}}\biggr)^3 \biggr] \, .</math>
  </td>
</tr>
</table>
</div>


For a given choice of the set of physical parameters <math>M</math>, <math>K</math>, <math>J</math>, <math>P_e</math>, and <math>\gamma_g</math>, extrema occur wherever,
<font color="red">Normalized Gravitational Potential Energy:</font>
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~W_\mathrm{grav}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
\frac{d\mathfrak{G}}{dR} = 0 \, .
- 4\pi GM_\mathrm{tot} R_\mathrm{norm}^2 \rho_\mathrm{norm} \int_0^{\chi=R_\mathrm{limit}^*} \biggl[\frac{M_r(r^*)}{M_\mathrm{tot}} \biggr]  r^* \rho^* dr^*
</math>
</math>
  </td>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
- E_\mathrm{norm} \int_0^{\chi = R_\mathrm{limit}^*} 3\biggl[\frac{M_r(r^*)}{M_\mathrm{tot}} \biggr]  r^* \rho^* dr^* \, .
</math>
  </td>
</tr>
</table>
</div>
</div>
For the free energy function identified above,  
 
<font color="red">Normalized Reservoir of Thermodynamic Energy:</font> 
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{S}_I</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~E_\mathrm{norm}  \int_0^{\chi=R_\mathrm{limit}^*} 3 \ln (\rho^*) (r^*)^2 \rho^* dr^* \, ,</math>
  </td>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{S}_A</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{E_\mathrm{norm}}{({\gamma_g}-1)}  \int_0^{\chi=R_\mathrm{limit}^*}  4\pi (r^*)^2 P^* dr^* \, .</math>
  </td>
</tr>
</table>
</div>
 
<font color="red">Normalized Rotational Kinetic Energy:</font> 
<div align="center">
<div align="center">
<math>
<table border="0" cellpadding="5" align="center">
\frac{d\mathfrak{G}}{dR} = \frac{1}{R_0} \biggl[ A\chi^{-2} +~ (1-\delta_{1\gamma_g})~3(1 - \gamma_g) B\chi^{2 -3\gamma_g} -~ \delta_{1\gamma_g} B_I \chi^{-1} ~ -2C \chi^{-3} +~ 3D\chi^2 \biggr] \, .
 
<tr>
  <td align="right">
<math>~T_\mathrm{rot}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\pi \dot\varphi_c^2 R_\mathrm{norm}^5 \rho_\mathrm{norm}
\int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3  d\varpi^*
\int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}} (\rho^*)  dz^*
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{5^2\pi}{2^2} \biggr) \biggl[ \frac{J^2 R_\mathrm{norm} \rho_\mathrm{norm}}{M_\mathrm{tot}^2} \biggr] \chi_\mathrm{eq}^{-4}
\int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3  d\varpi^*
\int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}}  (\rho^*) dz^*
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~  
\biggl( \frac{3\cdot 5^2}{2^4} \biggr) \biggl[  \frac{J^2}{M_\mathrm{tot}} \biggl(\frac{E_\mathrm{norm} }{G M_\mathrm{tot}^2 }\biggr)^2 \biggr] \chi_\mathrm{eq}^{-4}
\int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3  d\varpi^*
\int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}}  (\rho^*)  dz^*
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ E_\mathrm{norm}
\biggl( \frac{3^2\cdot 5^2}{2^6 \pi} \biggr) \biggl[  \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4}  \biggr] \chi_\mathrm{eq}^{-4}
\int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3  d\varpi^*
\int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}}  (\rho^*)  dz^* \, ,
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>
where,
where,  
<div align="center">
<div align="center">
<math>\chi \equiv \frac{R}{R_0} \, .</math>
<math>\dot\varphi_c \equiv \frac{5J}{2M_\mathrm{tot} R_\mathrm{eq}^2} =
\frac{5}{2} \biggl[ \frac{J}{M_\mathrm{tot} R_\mathrm{norm}^2} \biggr] \chi_\mathrm{eq}^{-2} \, ,</math>
</div>
</div>
So <math>\chi_\mathrm{eq} \equiv (R/R_0)_\mathrm{eq}</math> is obtained from the real root(s) of the equation,
is a characteristic rotation frequency in the equilibrium configuration whose value is set once the system's total angular momentum, <math>~J</math>, is specified.
 
=====Separate Time &amp; Space=====
Our intent is to vary the size of the configuration <math>~(R_\mathrm{limit})</math> while holding the (properly normalized) internal structural profile fixed, so let's separate the spatial integral over the (fixed) structural profile from the time-varying configuration size.  Making use of the dimensionless ''internal'' coordinates,
<div align="center">
<div align="center">
<math>
<math>~x \equiv \frac{r}{R_\mathrm{limit}} \, ,~~~~w \equiv \frac{\varpi}{R_\mathrm{limit}} \, ,
A \chi^{-2} +~ (1-\delta_{1\gamma_g})~3(1 - \gamma_g) B\chi^{2 -3\gamma_g} -~ \delta_{1\gamma_g} B_I \chi^{-1} ~ -2C \chi^{-3} +~ 3D\chi^2 = 0 \, ,
~~~~\zeta \equiv \frac{z}{R_\mathrm{limit}} \, ,
</math>
</math>
</div>
</div>
or, equivalently, from the roots of the equation,
that always run from zero to one, we have,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~r^*</math>
  </td>
  <td align="center">
<math>~\rightarrow~</math>
  </td>
  <td align="left">
<math>
~x \biggl( \frac{R_\mathrm{limit}}{R_\mathrm{norm}} \biggr) = x \chi \, ;
</math>
&nbsp;&nbsp;&nbsp;and, likewise, &nbsp;&nbsp;&nbsp;
<math>
~~~~\varpi^* ~\rightarrow~ w \chi \, ;
~~~~z^* ~\rightarrow~ \zeta \chi \, ;
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\rho^*</math>
  </td>
  <td align="center">
<math>~\rightarrow~</math>
  </td>
  <td align="left">
<math>
\biggl[ \frac{\rho(x)}{\bar\rho} \biggr] \biggl( \frac{\bar\rho}{\rho_\mathrm{norm}} \biggr)
= \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] \biggl( \frac{M_\mathrm{limit}/R_\mathrm{limit}^3}{M_\mathrm{tot}/R_\mathrm{norm}^3} \biggr)
= \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] \biggl(  \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \chi^{-3} 
= \frac{\rho_c}{\bar\rho} \biggl[ \frac{\rho(x)}{\rho_c} \biggr] \biggl(  \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \chi^{-3} \, ;
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~P^*</math>
  </td>
  <td align="center">
<math>~\rightarrow~</math>
  </td>
  <td align="left">
<math>
\biggl[ \frac{P(x)}{P_c} \biggr] \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr)
= \biggl[ \frac{P(x)}{P_c} \biggr] \biggl( \frac{K\rho_c^\gamma}{P_\mathrm{norm}} \biggr)
= \biggl[ \frac{P(x)}{P_c} \biggr] \biggl( \frac{\rho_c}{\bar\rho} \biggr)^\gamma
\biggl[ \frac{(3M_\mathrm{limit}/4\pi R_\mathrm{limit}^3)^\gamma}{K^{-1}P_\mathrm{norm}} \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;&nbsp;&nbsp;&nbsp;
  </td>
  <td align="left">
<math>
= \biggl[ \frac{P(x)}{P_c} \biggr] \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]^\gamma
\biggl[ \frac{K M_\mathrm{tot}^\gamma}{P_\mathrm{norm} R_\mathrm{norm}^{3\gamma}} \biggr] \biggl(  \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma
\biggl( \frac{R_\mathrm{limit}}{R_\mathrm{norm}}  \biggr)^{-3\gamma}
= \biggl[ \frac{P(x)}{P_c} \biggr] \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]^\gamma \biggl(  \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma
\chi^{-3\gamma} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\dot\varphi}{\dot\varphi_c}</math>
  </td>
  <td align="center">
<math>~\rightarrow~</math>
  </td>
  <td align="left">
<math>
<math>
2C \chi^{-2} + ~ (1-\delta_{1\gamma_g})~3(\gamma_g-1) B\chi^{3 -3\gamma_g} +~ \delta_{1\gamma_g} B_I ~-~A\chi^{-1} -~ 3D\chi^3 = 0 \, .
\biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{limit}} \biggr] \biggl( \frac{\dot\varphi_\mathrm{limit}}{\dot\varphi_c}\biggr)
= \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{limit}} \biggr] \biggl( \frac{R_\mathrm{limit}}{R_\mathrm{eq}}\biggr)^{-2}
= \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{limit}} \biggr] \chi_\mathrm{eq}^{2} \chi^{-2} \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>
As a definition of equilibrium states, this last expression is also the well-known scalar virial equation, derivable from the first moment of the equation of motion.  A more recognizable expression can be obtained by replacing each of the terms by the energy contents that they represent:
 
=====Summary of Normalized Expressions=====
Hence, our normalized expressions become,
<div align="center">
<div align="center">
<table border="1" cellpadding="8">
<tr><th align="center">
Normalized Expressions
</th></tr>
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{M_r(x)}{M_\mathrm{tot}}  </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)
\int_0^{x}  3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr]  dx \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{P_e V}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{4\pi}{3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr)  \chi^3 \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{W_\mathrm{grav}}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
<td align="left">
<math>
<math>
2(T_\mathrm{rot} + S) + W - 3P_e V = 0 \, .
- \chi^{-1} \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)
\int_0^{1} 3x \biggl[\frac{M_r(x)}{M_\mathrm{tot}} \biggr]  \biggl[ \frac{\rho(x)}{\rho_c} \biggr] dx
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
<td align="left">
<math>
- \frac{3}{5} \chi^{-1} \biggl( \frac{\rho_c}{\bar\rho} \biggr)^2_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^2
\int_0^{1} 5x \biggl\{\int_0^{x}  3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr]  dx\biggr\}  \biggl[ \frac{\rho(x)}{\rho_c} \biggr] dx \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi}{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma}
\biggl\{ \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]_\mathrm{eq}^{\gamma} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma
\int_0^{1}  3x^2 \biggl[ \frac{P(x)}{P_c} \biggr]  dx \biggr\} \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_I}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \int_0^{1}
\biggl\{ \ln \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] -3\ln \biggl[ \frac{R_\mathrm{edge}}{R_\mathrm{norm}} \biggr]  \biggr\}
3 x^2 \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] dx </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-3 \ln \chi  + \mathrm{constant} \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{T_\mathrm{rot}}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \chi^{-2}
\biggl( \frac{3^2\cdot 5^2}{2^6 \pi} \biggr) \biggl[  \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \biggl( \frac{\rho_c}{\bar\rho}  \biggr)_\mathrm{eq}
\int_0^{1} \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{edge}} \biggr]^2 w^3  dw
\int_{-\sqrt{1 - w^2}}^{\sqrt{1 - w^2}}  \biggl[ \frac{\rho(w,\zeta)}{\rho_c} \biggr]  d\zeta \, .
</math>
</math>
  </td>
</tr>
</table>
</td></tr>
<tr><td align="left>
[<font color="red">NOTE to self (21 September 2014)<b></b></font>:  The expressions for <math>~\mathfrak{S}_I</math> and <math>~T_\mathrm{rot}</math> may not properly account for ratio of M_limit to M_tot.]
</td></tr>
</table>
</div>
</div>
In this expression, <math>S</math> is the thermal energy content of the configuration; the relationship between <math>S</math> and the configuration's total internal energy, <math>U</math>, is provided in our [[User:Tohline/VE#Adiabatic|associated derivation of both the adiabatic and isothermal free energy functions]].


=Examples=
 
==Isolated, Nonrotating Configuration==
It should be emphasized that the coefficient involving the density ratio, <math>~(\rho_c/\bar\rho)</math>, that lies outside of the integral in most of these expressions depends only on the internal structure, and not the overall size, of the configuration.  It can therefore be evaluated at any time.  We usually will choose to evaluate this coefficient in an equilibrium state, that is, when <math>~R_\mathrm{limit} \rightarrow R_\mathrm{eq}</math>.  Accordingly, the subscript "eq" has been attached to this coefficient.  The inverse of this density ratio can be obtained from the integral expression for <math>~M_r</math> by recognizing that <math>~M_r \rightarrow M_\mathrm{limit}</math> when the upper limit on the integral <math>~x \rightarrow 1</math>.  Hence,
For a nonrotating configuration <math>(C=J=0)</math> that is not influenced by the effects of a bounding external medium <math>(D=P_e = 0)</math>, the statement of virial equilibrium is,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl(\frac{\rho_c}{\bar\rho} \biggr)^{-1}_\mathrm{eq}  </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \int_0^{1}  3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr]_\mathrm{eq}  dx \, .</math>
  </td>
</tr>
</table>
</div>
This coefficient also may be rewritten in terms of the central pressure in the equilibrium state; specifically, using a sequence of steps similar to the ones that were used, above, in rewriting <math>~P^*</math>, we can write,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>
<math>
(1-\delta_{1\gamma_g})~3(\gamma_g-1) B\chi^{3 -3\gamma_g} +~ \delta_{1\gamma_g} B_I ~-~A\chi^{-1}   = 0 \, .
\biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]_\mathrm{eq}^{\gamma} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma
</math>
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr) \chi^{3\gamma} \biggr]_\mathrm{eq} \, .</math>
  </td>
</tr>
</table>
</div>
=====Looking Ahead to Bipolytropes=====
<div id="BiPolytrope">
<table border="1" align="center" width="90%" cellpadding="20">
<tr><td align="left">
<b><font color="purple">ASIDE:</font></b> When we discuss the free energy of bipolytropic configurations, we will need to divide the expression for <math>~\mathfrak{S}_A/E_\mathrm{norm}</math> into two parts &#8212; one accounting for the reservoir of thermodynamic energy in the bipolytrope's "core" and one accounting for the reservoir of thermodynamic energy in the bipolytrope's "envelope."  It is useful to develop this two-part expression here, while the definition of <math>~\mathfrak{S}_A</math> is fresh in our minds and to show how the two-part expression reduces to the simpler expression for <math>~\mathfrak{S}_A/E_\mathrm{norm}</math>, just derived, when there is no distinction drawn between the properties of the core and the envelope.
In what follows, we will use the subscript ''core'' (or "c") when referencing physical properties of the bipolytrope's core and the subscript ''env'' (or "e") for the envelope; and, as above, we will use <math>~x \equiv r/R_\mathrm{edge}</math> to denote the dimensionless radial location within a configuration of radius, <math>~R_\mathrm{edge}</math>.  The dimensionless radial coordinate, <math>~q \equiv x_i = r_i/R_\mathrm{edge}</math>, will identify the radial ''interface'' where the core meets the envelope; that is, <math>~q</math> will identify both the outer edge of the core and the inner edge of the envelope.  In general, separate expressions will define the run of pressure through the core and through the envelope.  We can assume that, for the core, the pressure drops monotonically from a value of <math>~P_0</math> at the center of the configuration according to an expression of the form,
<div align="center">
<math>~P_\mathrm{core}(x) = P_0 [1 - p_c(x)]</math> &nbsp; &nbsp;&nbsp; for &nbsp; &nbsp;&nbsp; <math>~0 \leq x \leq q \, ,</math>
</div>
and that, for the envelope, the pressure drops monotonically from a value of <math>~P_{ie}</math> at the interface according to an expression of the form,
<div align="center">
<math>~P_\mathrm{env}(x) = P_{ie} [1 - p_e(x)]</math> &nbsp; &nbsp;&nbsp; for &nbsp; &nbsp;&nbsp; <math>~q \leq x \leq 1 \, ,</math>
</div>
where <math>~p_c(x)</math> and <math>~p_e(x)</math> are both dimensionless functions that will depend on the equations of state that are chosen for the core and envelope, respectively.  By prescription, the pressure in the envelope must drop to zero at the surface of the bipolytropic configuration, hence, we should expect that <math>~p_e(1) = 1</math>.  Furthermore, by prescription, the pressure in the core will drop to a value, <math>~P_{ic}</math>, at the interface, so we can write,
<div align="center">
<math>~P_{ic} = P_0 [1 - p_c(q)] \, .</math>
</div>
</div>


===Isothermal===
In equilibrium &#8212; that is, when <math>~R_\mathrm{edge} = R_\mathrm{eq}</math> &#8212; we will demand that the pressure at the interface be the same, whether it is referenced in the core or in the envelope, that is, we will demand that <math>~P_{ic} = P_{ie} \, .</math> It will therefore prove to be strategically advantageous to rewrite the expression for the run of pressure through the core in terms of the pressure at the interface rather than in terms of the central pressure; specifically,
For isothermal configurations <math>(\delta_{1\gamma_g} = 1)</math>, one and only one equilibrium state arises where,
<div align="center">
<div align="center">
<math>~P_\mathrm{core}(x) = P_{ic} \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr] \, .</math>
</div>
Referencing these prescriptions for <math>~P_\mathrm{core}(x)</math> and <math>~P_\mathrm{env}(x)</math>, the two-part expression for the reservoir of thermodynamic energy is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{1}{({\gamma_c}-1)}  \int_0^{r_i/R_\mathrm{norm}}  4\pi (r^*)^2 P^*_\mathrm{core} dr^*
+ \frac{1}{({\gamma_e}-1)}  \int_{r_i/R_\mathrm{norm}}^\chi  4\pi (r^*)^2 P^*_\mathrm{env} dr^*
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
B_I = A\chi^{-1} \, ,
\frac{4\pi \chi^3 }{({\gamma_c}-1)} \biggl[ \frac{P_{ic}}{P_\mathrm{norm}} \biggr] \int_0^q  \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr]  x^2 dx
+ \frac{4\pi \chi^3 }{({\gamma_e}-1)} \biggl[ \frac{P_{ie}}{P_\mathrm{norm}} \biggr]  \int_q^1  \biggl[1 - p_e(x) \biggr]  x^2 dx \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>
that is,
As is implied by the subscripts on the adiabatic exponents that appear in the leading factor of each of the two terms, we are assuming that, as the bipolytropic system expands or contracts, the thermodynamic properties of the material in the envelope will vary as prescribed by an adiabat of index, <math>~\gamma_e</math>, while the thermodynamic properties of material in the core will vary as prescribed by a, generally different, adiabat of index, <math>~\gamma_c</math>.  Therefore, as the radius of the bipolytropic configuration, <math>~R_\mathrm{edge}</math>, is varied, the density of each fluid element will vary and, in the core, the pressure of each fluid element will vary as <math>~P \propto \rho^{\gamma_c}</math> while, in the envelope, the pressure of each fluid element will vary as <math>~P \propto \rho^{\gamma_e}</math>.  If we furthermore assume that the mass in the core and the mass in the envelope remain constant during a phase of contraction or expansion, the density of each fluid element will vary as <math>~R_\mathrm{edge}^{-3}</math>, whether the material is associated with the core or with the envelope.  Therefore, using the subscript, "eq," to identify the value of thermodynamic quantities when the system is in an equilibrium state and, accordingly, <math>~R_\mathrm{edge} = R_\mathrm{eq}</math>, we can write,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\biggl[ \frac{P}{P_\mathrm{eq}} \biggr]_\mathrm{core}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{\rho}{\rho_\mathrm{eq}} \biggr)^{\gamma_c} = \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_c} \, ,</math>
  </td>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\biggl[ \frac{P}{P_\mathrm{eq}} \biggr]_\mathrm{env}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{\rho}{\rho_\mathrm{eq}} \biggr)^{\gamma_e} = \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_e} \, .</math>
  </td>
</tr>
</table>
</div>
In particular, for any <math>~R_\mathrm{edge}</math>, material associated with the core that lies at the interface will have a pressure given by the relation,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_{ic}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
R_\mathrm{eq} = R_0 \chi_\mathrm{eq} = \frac{A}{B_I}\cdot R_0 = \frac{GM}{5c_s^2} \, .
(P_{ic})_\mathrm{eq} \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_c}
</math>  
= (P_{ic})_\mathrm{eq} \biggl( \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \biggr)^{+3\gamma_c}\biggl( \frac{R_\mathrm{edge}}{R_\mathrm{norm}} \biggr)^{-3\gamma_c}
= (P_{ic})_\mathrm{eq} \chi_\mathrm{eq}^{+3\gamma_c} \chi^{-3\gamma_c}  
\, ,</math>
  </td>
</tr>
</table>
</div>
</div>
 
while material associated with the envelope that lies at the interface will have a pressure given by the relation,
===Adiabatic===
For adiabatic configurations <math>(\delta_{1\gamma_g} = 0)</math>, one equilibrium state exists for each value of <math>\gamma_g</math> and it occurs where,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P_{ie}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
3(\gamma_g-1) B\chi^{3 -3\gamma_g} = A\chi^{-1} \, ,
(P_{ie})_\mathrm{eq} \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_e}
</math>
= (P_{ie})_\mathrm{eq} \biggl( \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \biggr)^{+3\gamma_e}\biggl( \frac{R_\mathrm{edge}}{R_\mathrm{norm}} \biggr)^{-3\gamma_e}  
= (P_{ie})_\mathrm{eq} \chi_\mathrm{eq}^{+3\gamma_e} \chi^{-3\gamma_e}  
\, .</math>
  </td>
</tr>
</table>
</div>
</div>
that is, where,
Hence,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{4\pi }{({\gamma_c}-1)}  \biggl[ \frac{P_{ic} \chi^{3\gamma_c}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_c}
\int_0^q  \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr]  x^2 dx
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>
<math>
R_\mathrm{eq} = R_0 \chi_\mathrm{eq} = \biggl[ \frac{3(\gamma_g-1) B}{A} \cdot R_0^{(3\gamma_g-4)} \biggr]^{1/(3\gamma_g-4)} = \biggl[ 5\biggl( \frac{3}{4\pi} \biggr)^{\gamma_g-1} \cdot \frac{KM^{(\gamma_g-2)}}{G} \biggr]^{1/(3\gamma_g-4)} \, .
+ ~\frac{4\pi }{({\gamma_e}-1)} \biggl[ \frac{P_{ie} \chi^{3\gamma_e}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_e}  
\int_q^\biggl[1 - p_e(x) \biggr] x^2 dx \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
----
Now, let's see how this expression simplifies if <math>~P_{ie} = P_{ic}</math> and <math>~\gamma_e = \gamma_c</math> and, hence, the properties of the envelope are indistinguishable from the properties of the core.  We note, first, that in this limit, <math>~P_\mathrm{core}(x)</math> and <math>~P_\mathrm{env}(x)</math> must be identical functions of <math>~x</math>, that is, it must be the case that <math>~p_e(x)</math> is related to <math>~p_c(x)</math> via the relation,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~1 - p_e(x) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1 - p_c(x)}{1-p_c(q)} \, .</math>
  </td>
</tr>
</table>
</div>
</div>
Notice that, for <math>\gamma_g=2</math>, the equilibrium radius depends only on the specific entropy of the gas and is independent of the configuration's mass.  Conversely, notice that, for <math>\gamma_g = 4/3</math>, the mass of the configuration is independent of the radius.  For all other values of <math>\gamma_g</math>, the equilibrium mass-radius relationship for adiabatic configurations is,
 
We therefore obtain,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
M^{(\gamma_g - 2)} \propto R_\mathrm{eq}^{(3\gamma_g -4)} \, .
\frac{4\pi }{({\gamma_c}-1)} \biggl[ \frac{P_{ic} \chi^{3\gamma_c}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_c}
\biggl\{ \int_0^q  \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr]  x^2 dx + \int_q^1  \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr]  x^2 dx \biggr\}
</math>
</math>
</div>
  </td>
This means that, for <math>\gamma_g</math> &#x3E; <math> 2</math> or <math>\gamma_g </math>&#x3C; <math>4/3</math>, configurations with larger mass (but the same specific entropy) have larger equilibrium radii.  However, for <math>\gamma_g</math> in the range, <math>2</math> &#x3E; <math>\gamma_g </math> &#x3E; <math>4/3</math>, configurations with larger mass have smaller equilibrium radii.
</tr>


Note that the result obtained for the isothermal configuration could have been obtained by setting <math>\gamma_g = 1</math> in this adiabatic solution, because <math>K = c_s^2</math> when  <math>\gamma_g = 1</math>.
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{4\pi }{({\gamma_c}-1)}  \biggl[ \frac{P_0 \chi^{3\gamma_c}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_c}
\biggl\{ \int_0^1  \biggl[1 - p_c(x)\biggr]  x^2 dx  \biggr\}
</math>
  </td>
</tr>


==Nonrotating Configuration Embedded in an External Medium==
<tr>
For a nonrotating configuration <math>(C=J=0)</math> that is embedded in, and is influenced by the pressure <math>P_e</math> of, an external medium, the statement of virial equilibrium is,
  <td align="right">
<div align="center">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
(1-\delta_{1\gamma_g})~3(\gamma_g-1) B\chi^{3 -3\gamma_g} +~ \delta_{1\gamma_g} B_I ~-~A\chi^{-1}  -~ 3D\chi^3 = 0 \, .
\frac{4\pi }{({\gamma_g}-1)} \cdot \chi^{3-3\gamma}
\biggl\{ \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]_\mathrm{eq}^{\gamma}
\int_0^{1}  \biggl[ \frac{P(x)}{P_c} \biggr] x^2 dx \biggr\} \, ,
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>
as desired.


===Bounded Isothermal===
</td></tr>
For isothermal configurations <math>(\delta_{1\gamma_g} = 1)</math>, we deduce that equilibrium states exist at radii given by the roots of the equation,
</table>
</div>
 
====Idealized Configuration====
(For simplicity throughout this subsection, we will assume that the mass enclosed within the configuration's limiting radius, <math>~M_\mathrm{limit}</math>, equals the normalization mass, <math>~M_\mathrm{tot}</math>.)  In the idealized situation of a configuration that has uniform density, <math>~\rho(x) = \rho_c</math> &#8212; and, hence, the density ratio <math>~\rho_c/\bar\rho = 1</math> &#8212; the mass interior to each radius is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{M_r(x)}{M_\mathrm{tot} }  </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \int_0^{x}  3x^2  dx = x^3 \, ,</math>
  </td>
</tr>
</table>
</div>
and the normalized gravitational potential energy is,
<div align="center">
<table border="0" cellpadding="8" align="center">
<tr>
  <td align="right">
<math>~\frac{W_\mathrm{grav}}{E_\mathrm{norm} }</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
<td align="left">
<math>
<math>
B_I ~-~A\chi^{-1}  -~ 3D\chi^3 = 0 \, .
- \frac{3}{5} \chi^{-1} \int_0^{1} 5x \biggl\{ x^3\biggr\dx = -\frac{3}{5} \chi^{-1} \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>


====Bonnor's (1956) Equivalent Relation====
If, in addition, the configuration is uniformly rotating with angular velocity, <math>~\dot\varphi = \dot\varphi_\mathrm{edge}</math>, and has uniform pressure, <math>~P_c</math>, evaluation of the ordered kinetic energy and thermodynamic energy integrals yields,
Inserting the expressions for the coefficients <math>B_I</math>, <math>A</math>, and <math>D</math> gives,
<div align="center">
<div align="center">
<math>
<table border="0" cellpadding="8" align="center">
3Mc_s^2 ~- \frac{3}{5} \frac{GM^2}{R}  = 3 P_e \biggl( \frac{4\pi}{3} R^3\biggr) \, ,
 
<tr>
  <td align="right">
<math>~\frac{T_\mathrm{rot}}{E_\mathrm{norm} }</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ 2\chi^{-2}
\biggl( \frac{3^2\cdot 5^2}{2^6\pi} \biggr) \biggl[  \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr]
\int_0^{1}  w^3  dw
\int_{0}^{\sqrt{1 - w^2}}  d\zeta
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \chi^{-2}
\biggl( \frac{3^2\cdot 5^2}{2^5\pi} \biggr) \biggl[  \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr]
\int_0^1 w^3 (1-w^2)^{1/2} dw  
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~  \chi^{-2}
\biggl( \frac{3^2\cdot 5^2}{2^5\pi} \biggr)\biggl[  \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] 
\biggl[ -\frac{1}{15} (1-w^2)^{3/2} (3w^2 +2) \biggr]_0^1 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \chi^{-2}
\biggl( \frac{3\cdot 5}{2^4 \pi} \biggr) \biggl[  \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] 
\, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi }{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma}
\biggl\{ \biggl(\frac{3}{4\pi} \biggr)^{\gamma}\int_0^{1}  3x^2  dx \biggr\}
= \frac{1}{({\gamma_g}-1)} \biggl(\frac{3}{4\pi} \biggr)^{\gamma-1} \chi^{3-3\gamma}
\, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_I}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-3 \ln \chi  + \mathrm{constant} \, ,
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>
or, because the volume <math>V = (4\pi R^3/3)</math> for a spherical configuration, we can write,
where the various dimensionless integration variables are, <math>~x \equiv (r/R)</math>, <math>~\zeta \equiv (z/R)</math>, and <math>~w \equiv (\varpi/R)</math>.
 
====Structural Form Factors====
Keeping in mind the expressions that arise in the case of our just-defined, idealized configuration, in more realistic cases we generally will write each energy term as follows:
<div align="center">
<div align="center">
<table border="0" cellpadding="8" align="center">
<tr>
  <td align="right">
<math>~\frac{W_\mathrm{grav}}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
<td align="left">
<math>
<math>
3P_e V = 3Mc_s^2 ~- \frac{3}{5} \biggl( \frac{4\pi}{3} \biggr)^{1/3} \frac{GM^2}{V^{1/3}} \, .
- \frac{3}{5} \chi^{-1} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^2 \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \, ,
</math>
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{T_\mathrm{rot}}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{3\cdot 5}{2^4 \pi} \biggr)\chi^{-2} \biggl[  \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \biggl( \frac{\rho_c}{\bar\rho}  \biggr)_\mathrm{eq} \cdot \frac{\mathfrak{f}_T}{\mathfrak{f}_M} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi}{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma}
\biggl[ \frac{3}{4\pi} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \biggr]_\mathrm{eq}^{\gamma}
\cdot \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma}}  </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4\pi}{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma}
\biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr)\chi^{3\gamma} \biggr]_\mathrm{eq} \cdot \mathfrak{f}_A \, ,</math>
  </td>
</tr>
</table>
</div>
</div>
It is instructive to compare this expression for a self-gravitating, isothermal equilibrium sphere to the one that was presented in 1956 by [http://adsabs.harvard.edu/abs/1956MNRAS.116..351B Bonnor] (1956, MNRAS, 116, 351) as equation (1.2) in a paper titled, "Boyle's Law and Gravitational Instability":
 
<span id="FormFactors">where the dimensionless form factors, <math>~\mathfrak{f}_i</math>, which are assumed to be independent of the overall configuration size and will each usually of order unity, are</span>,
 
<div align="center">
<div align="center">
<table border="2">
<table border="0" cellpadding="5" align="center">
<tr><td>
<tr>
[[File:Bonnor1951Eq1.2.jpg|600px|center|Bonnor (1956, MNRAS, 116, 351)]]
  <td align="right">
</td></tr>
<math>~\mathfrak{f}_M </math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ \int_0^1  3\biggl[ \frac{\rho(x)}{\rho_c}\biggr] x^2 dx = \biggl( \frac{\bar\rho}{\rho_c} \biggr)_\mathrm{eq} \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\mathfrak{f}_W</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~  3\cdot 5 \int_0^1 \biggl\{ \int_0^x  \biggl[ \frac{\rho(x)}{\rho_c}\biggr] x^2 dx \biggr\}  \biggl[ \frac{\rho(x)}{\rho_c}\biggr] x dx\, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\mathfrak{f}_T</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ \frac{15}{2} \int_0^1 \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{edge}} \biggr]^2 w^3 dw  \int_0^{\sqrt{1 - w^2}} 
\biggl[ \frac{\rho(w,\zeta)}{\rho_c} \biggr] d\zeta\, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\mathfrak{f}_A</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ \int_0^1 3\biggl[ \frac{P(x)}{P_c}\biggr] x^2 dx \, .</math>
  </td>
</tr>
 
<!-- (August 2015) DELETE NEXT EQUATION, AS DEFINITION IN TERMS OF AVERAGE PRESSURE IS LIKELY NOT CORRECT ...
<tr>
  <td align="right">
<math>~\mathfrak{f}_A</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ \int_0^1 3\biggl[ \frac{P(x)}{P_c}\biggr] x^2 dx = \biggl( \frac{\bar{P}}{P_c} \biggr)_\mathrm{eq} \, .</math>
  </td>
</tr>
END DELETION -->
 
</table>
</table>
</div>
</div>
Once we realize that, for an isothermal configuration, twice the thermal energy content, <math>2S</math>, can be written as <math>(3NkT)</math> just as well as via the product, <math>(3Mc_s^2)</math>, we see that our expression is identical to Bonnor's if we set the prefactor on Bonnor's last term, <math>\alpha = (4\pi/3)^{1/3}/5</math>.  (Indeed, later on the first page of his paper, Bonnor points out that this is the appropriate value for <math>\alpha</math> when considering a uniform density sphere.)
In each case, the "idealized" energy expression is retrieved if/when the relevant form factor, <math>~\mathfrak{f}_i</math>, is set to unity.
 
====Some Detailed Examples====
 
In an [[User:Tohline/SSC/Virial/FormFactors#Structural_Form_Factors|accompanying discussion]], we derive detailed expressions for a selected subset of the above structural form factors and corresponding energy terms in the case of spherically symmetric configurations that obey an <math>~n=5</math> or an <math>~n=1</math> polytropic equation of stateThe hope is that this will illustrate, in a clear and helpful manner, how the task of calculating form factors is to be carried out, in practice; and, in particular, to provide one nontrivial example for which analytic expressions are derivable.  This should help debug numerical algorithms that are designed to calculate structural form factors for more general cases that cannot be derived analytically.  The limits of integration will be specified in a general enough fashion that the resulting expressions can be applied, not only to the structures of ''isolated'' polytropes, but to [[User:Tohline/SSC/Virial/PolytropesSummary#Further_Evaluation_of_n_.3D_5_Polytropic_Structures|''pressure-truncated'' polytropes]] that are embedded in a hot, tenuous external medium and to the [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#Free_Energy|cores of bipolytropes]].


====P-V Diagram====
===Gathering it all Together===
Returning to the dimensionless form of this expression and multiplying through by <math>[-\chi/(3D)]</math>, we obtain,
Gathering all of the terms together we find that, to within an additive constant, the expression for the normalized free energy is,  
<div align="center">
<div align="center">
<math>
<math>
\chi^4 - \frac{B_I}{3D} \chi + \frac{A}{3D} = 0 \, .
\mathfrak{G}^* \equiv \frac{\mathfrak{G}}{E_\mathrm{norm}} =
-3A\chi^{-1} -~ \frac{(1-\delta_{1\gamma_g})}{(1-\gamma_g)} B \chi^{3-3\gamma_g} -~ \delta_{1\gamma_g} 3\ln \chi
+~ C \chi^{-2} +~ D\chi^3 \, ,
</math>
</math>
</div>
</div>
Now, taking a cue from the solution presented above for an isolated isothermal configuration, we choose to set the previously unspecified scale factor, <math>R_0</math>, to, 
where,  
<div align="center">
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~A</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>\frac{1}{5} \cdot \biggl[ \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \frac{1}{\mathfrak{f}_M} \biggr]^2 \cdot \mathfrak{f}_W \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~B</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>
<math>
R_0 = \frac{GM}{5c_s^2} \, ,
\frac{4\pi}{3}
\biggl[ \frac{3}{4\pi} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}}\biggr)  \frac{1}{\mathfrak{f}_M} \biggr]_\mathrm{eq}^{\gamma}
\cdot \mathfrak{f}_A
</math>
</math>
</div>
  </td>
in which case <math>B_I = A</math>, and the quartic equation governing the radii of equilibrium states becomes, simply,
</tr>
<div align="center">
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
\chi^4 - \frac{\chi}{\Pi} + \frac{1}{\Pi} = 0 \, ,
\frac{4\pi}{3}
\biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr)\chi^{3\gamma} \biggr]_\mathrm{eq}  
\cdot \mathfrak{f}_A \, ,
</math>
</math>
</div>
  </td>
where,
</tr>
<div align="center">
<tr>
  <td align="right">
<math>~C</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>
<math>
\Pi \equiv \frac{3D}{B_I} = \frac{4\pi R_0^3 P_e}{3Mc_s^2} = \frac{4\pi P_e G^3 M^2}{3\cdot 5^3 c_s^8} \, .
\frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \cdot \frac{\mathfrak{f}_T}{\mathfrak{f}_M} \, ,
</math>
</math>
</div>
  </td>
For a given choice of configuration mass and sound speed, this parameter, <math>\Pi</math>, can be viewed as a dimensionless external pressure.  Alternatively, for a given choice of <math>P_e</math> and <math>c_s</math>, <math>\Pi^{1/2}</math> can represent a dimensionless mass; or, for a given choice of <math>M</math> and <math>P_e</math>, <math>\Pi^{-1/8}</math> can represent a dimensionless sound speed.  Here we will view it as a dimensionless external pressure. 
</tr>


The above quartic equation can be rearranged immediately to give the external pressure that is required to obtain a particular configuration radius, namely,
<tr>
<div align="center">
  <td align="right">
<math>~D</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>
<math>
\Pi = \frac{(\chi - 1)}{\chi^4} \, .
\biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>
The resulting behavior is shown by the black curve in Figure 2.


Once the pressure exerted by the external medium (<math>~P_e</math>), and the configuration's mass (<math>~M_\mathrm{tot}</math>), angular momentum (<math>~J</math>), and specific entropy (via <math>~K</math>) &#8212; or, in the isothermal case, sound speed (<math>~c_s</math>) &#8212;  have been specified, the values of all of the coefficients are known and the above algebraic expression for <math>~\mathfrak{G}^*</math> describes how the free energy of the configuration will vary with the configuration's size (<math>~\chi</math>) for a given choice of <math>~\gamma_g</math>.
==Visual Representation==
<div align="center">
<div align="center">
<table border="2" cellpadding="8">
<table border="2" cellpadding="8">
<tr>
<tr>
   <td align="center" colspan="2">
   <td align="center" colspan="2">
'''Figure 2:''' <font color="darkblue">Equilibrium P-V Diagram </font>  
'''Figure 1:''' <font color="darkblue">Free Energy Surface </font>  
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td valign="top" width=450 rowspan="1">
   <td valign="top" width=450>
The black curve traces out the function,
This segment of the free energy "surface" shows how the free energy varies as the size of the configuration and the applied external pressure are varied, while all other relevant physical attributes are held fixed. 
 
The plotted function &#8212; derived from the above expression for <math>\mathfrak{G}^*</math>, with <math>~\gamma_\mathrm{g} = 1</math> and <math>~C=0</math> (see [[User:Tohline/SphericallySymmetricConfigurations/Virial#Bounded_Isothermal|further discussion]], below) &#8212; is, specifically,
<div align="center">
<div align="center">
<font size="-1">
<math>
<math>
\Pi = (\chi - 1)/\chi^4 \, ,
\mathfrak{G}^* = 3000\biggl[ - \frac{1}{\chi} - \ln\chi + \frac{\Pi}{3}\chi^3 + 0.9558 \biggr] \, .
</math>
</math>
</font>
</div>
</div>
and shows the dimensionless external pressure, <math>\Pi</math>, that is required to construct a nonrotating, self-gravitating, isothermal sphere with an equilibrium radius <math>\chi</math>.  The pressure becomes negative at radii <math>\chi < 1</math>, hence the solution in this regime is unphysical.
As shown, the size of the configuration <math>~(\chi)</math> increases to the right from <math>~1.2</math> to <math>~1.51</math>; the dimensionless external pressure <math>~(\Pi)</math> increases into the screen from <math>~0.103</math> to <math>~0.104</math>; and the dimensionless free energy, <math>~\mathfrak{G}^*</math>, increases upward.
 
[[User:Tohline/SphericallySymmetricConfigurations/Virial#Visual_Representation|Figure 1]] displays the free energy surface that "lies above" the two-dimensional parameter space (<math>1.2 < \chi < 1.51</math>; <math>0.103 < \Pi < 0.104</math>) that is identified here by the thin, red rectangle.
  </td>
  </td>
   <td align="center" bgcolor="white">
   <td align="center" bgcolor="black">
[[File:Bonnor1956Fig1.jpg|450px|center|Equilibrium P-R Diagram]]
[[File:3DFreeEnergy.jpg|350px|center|Free Energy Surface]]
   </td>
   </td>
</tr>
</tr>
</table>
</div>
==Energy Extrema==
As is illustrated in [[User:Tohline/SphericallySymmetricConfigurations/Virial#Visual_Representation|Figure 1]], the free energy surface generally will exhibit multiple local minima and local maxima, and may also possess one or more points of inflection. The locations along the energy surface where these special points arise identify equilibrium states, and the associated values of <math>~(R/R_0)_\mathrm{eq}</math> give the radii of the equilibrium configurations. 


</table>
For a given choice of the set of physical parameters <math>~M</math>, <math>~K</math>, <math>~J</math>, <math>~P_e</math>, and <math>~\gamma_g</math>, extrema occur wherever,
<div align="center">
<math>
\frac{d\mathfrak{G^*}}{d\chi} = 0 \, .
</math>
</div>
</div>
In the absence of self-gravity (''i.e.,'' <math>A=0</math>), the product of the external pressure and the volume should be constant.  The corresponding relation, <math>\Pi = \chi^{-3}</math>, is shown by the blue dashed curve in the figure.  As the figure illustrates, when gravity is included the P-V relationship pulls away from the PV = constant curve at sufficiently small volumes.  Indeed, the curve turns over at a finite pressure, <math>\Pi_\mathrm{max}</math>, and for every value of <math>\Pi < \Pi_\mathrm{max}</math> a second, more compact equilibrium configuration appears.  The location of <math>\Pi_\mathrm{max}</math> along the curve is identified by setting <math>\partial\Pi/\partial\chi = 0</math>, that is, it occurs where,
For the free energy function identified above,  
<div align="center">
<div align="center">
<math>
<math>
\frac{\partial\Pi}{\partial\chi} = -4 \chi^{-5}(\chi - 1) + \chi^{-4} = 0 \, ,  
\frac{d\mathfrak{G^*}}{d\chi}  =
3A\chi^{-2} -~ (1-\delta_{1\gamma_g})~3 B\chi^{2 -3\gamma_g} -~ \delta_{1\gamma_g} 3\chi^{-1} ~ -2C \chi^{-3} +~ 3D\chi^2  \, ,
</math>
</math>
 
</div>
<span id="GeneralVirial">so <math>\chi_\mathrm{eq} \equiv R_\mathrm{eq}/R_\mathrm{norm}</math> is obtained from the real root(s) of the equation,</span>
<div align="center">
<math>
<math>
\Rightarrow ~~~~~ \chi = \frac{2^2}{3} \approx 1.333333 \, .
2C \chi_\mathrm{eq}^{-2}  + ~ (1-\delta_{1\gamma_g})~3 B\chi_\mathrm{eq}^{3 -3\gamma_g} +~ \delta_{1\gamma_g} 3 ~
-~3A\chi_\mathrm{eq}^{-1} -~ 3D\chi_\mathrm{eq}^3 = 0 \, .
</math>
</math>
</div>
</div>
Hence,
<!-- COMMENT OUT THIS SECTION
As a definition of equilibrium states, this last expression is also the well-known scalar virial equation, derivable from the first moment of the equation of motion.  A more recognizable expression can be obtained by replacing each of the terms by the energy contents that they represent:
<div align="center">
<div align="center">
<math>\Pi_\mathrm{max} = \biggl( \frac{2^2}{3} \biggr)^{-4} \biggl( \frac{2^2}{3}-1 \biggr) = \frac{3^3}{2^8} \approx 0.105469\, .</math>
<math>
2(T_\mathrm{rot} + S) + W - 3P_e V = 0 \, .
</math>
</div>
</div>
In this expression, <math>S</math> is the thermal energy content of the configuration; the relationship between <math>S</math> and the configuration's total internal energy, <math>U</math>, is provided in our [[User:Tohline/VE#Adiabatic|associated derivation of both the adiabatic and isothermal free energy functions]].
END OF COMMENT -->


====Quartic Solution====
 
In the above <math>P-V</math> diagram discussion, we rearranged the quartic equation governing equilibrium configurations to give <math>\Pi</math> for any chosen value of <math>\chi</math>Alternatively, the four roots of the quartic equation &#8212; <math>\chi_1</math>, <math>\chi_2</math>, <math>\chi_3</math> and <math>\chi_4</math> in the presentation that follows &#8212; will identify the radii at which a spherical configuration will be in equilibrium for any choice of the external pressure, <math>\Pi</math>, assuming the roots are real. 
<div id="Tohline85">
<table border="1" align="center" width="90%" cellpadding="20">
<tr><td align="left">
<b><font color="purple">ASIDE:</font></b> When we discuss the equilibrium of isothermal, rotating configurations that are immersed in an external medium, we will draw on the work of [http://adsabs.harvard.edu/abs/1976ApJ...208..113W Weber (1976)] &#8212; ''Oscillation and Collapse of Interstellar Clouds'' &#8212; and the work of [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline (1985)] &#8212; ''Star Formation:  Phase Transition, not Jeans Instability'' &#8212; which, in turn draws upon [http://adsabs.harvard.edu/abs/1981ApJ...248..717T Tohline (1981)]In preparation for that discussion, we will go ahead and show how [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline's (1985)] statement of virial equilibrium &#8212; his equation (9) &#8212; is the same as the equation that defines free energy extrema that has been derived here; and we will show how [http://adsabs.harvard.edu/abs/1976ApJ...208..113W Weber's (1976)] "energy integral" &#8212; his equation (B3) &#8212; relates to our dimensionless free-energy function.
 
----
 
 
<table border="1" cellpadding="5" align="center">
<tr><td>
[[Image:Tohline1985_Eq9.png|500px|center]]
</td></tr>
</table>
 
First, in order to match sign conventions, we need to multiply our "free energy extrema" equation through by minus one; second, we should set <math>~\delta_{1\gamma_g} = 1</math> because [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline (1985)] was only concerned with isothermal systems; then, because [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline (1985)] normalizes each energy term by
<div align="center">
<math>~E^* \equiv \biggl( \frac{2^2 \cdot 3^2}{5^3} \biggr) \frac{G^2 M_\mathrm{tot}^5}{J^2} \, ,</math>
</div>
instead of by our <math>~E_\mathrm{norm}</math>, we need to multiply our equation through by the ratio,
<div align="center">
<div align="center">
<table border="1" cellpadding="10" bgcolor="darkblue">
<math>~\frac{E_\mathrm{norm}}{E^*} = \biggl( \frac{5^3}{2^4 \cdot 3\pi} \biggr) \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \, .</math>
</div>
With these three modifications, our "free energy extrema" relation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="center" bgcolor="lightblue">
  <td align="right">
Roots of the quartic equation: <math>\chi^4 - \chi \Pi^{-1}+ \Pi^{-1} = 0 </math>
<math>~0</math>
  </td>
   <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>\frac{3E_\mathrm{norm}}{E^*}\biggl[~A\chi_\mathrm{eq}^{-1} ~- \biggl( \frac{2C}{3}\biggr) \chi_\mathrm{eq}^{-2}   
~  +~ D\chi_\mathrm{eq}^3 - ~ B_I \biggr] \, .</math>
  </td>
</tr>
</table>
</div>
Next, because [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline (1985)] considered only uniform-density configurations, all of the dimensionless filling factors can be set to unity in the definitions of the leading coefficients of all of our energy terms; but, following [http://adsabs.harvard.edu/abs/1981ApJ...248..717T Tohline (1981)], the leading coefficients of two of our energy terms should be modified to include a factor involving the configuration's eccentricity,
<div align="center">
<math>e \equiv \biggl( 1 - \frac{Z_\mathrm{eq}^2}{R_\mathrm{eq}^2} \biggr)^{1/2} \, ,</math>
</div>
in order to account for rotational flattening.  Properly adjusted, the four coefficients are,
<div align="center">
<table border="0" cellpadding="5">
<tr>
  <td align="right">
<math>~A</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>\frac{1}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \, ,</math>
   </td>
   </td>
</tr>
</tr>


<tr><td>
<tr>
  <td align="right">
<math>~B_I</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>
1 \, ,
</math>
  </td>
</tr>


<div align="center">
<table border="0" cellpadding="3">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\chi_1</math>
<math>~C</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
+\frac{1}{2} y_r^{1/2} + \frac{1}{2} D_q \, ;
\frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] 
= \biggl( \frac{3^2}{5^2} \biggr) \frac{E_\mathrm{norm}}{E^*}  \, ,
</math>
</math>
   </td>
   </td>
Line 359: Line 1,852:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\chi_2</math>
<math>~D</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
+\frac{1}{2} y_r^{1/2} - \frac{1}{2} D_q \, ;
\biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} (1-e^2)^{1/2} \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
Inserting these coefficient definitions, our "free energy extrema" relation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>\frac{3E_\mathrm{norm}}{E^*}
\biggl[~\frac{1}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \chi_\mathrm{eq}^{-1}
~- \frac{E_\mathrm{norm}}{E^*} \biggl( \frac{2\cdot 3}{5^2} \biggr)  \chi_\mathrm{eq}^{-2}   
~  +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} (1-e^2)^{1/2} \chi_\mathrm{eq}^3 - ~ 1 \biggr] \, .</math>
  </td>
</tr>
</table>
</div>
Next we need to appreciate that [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline (1985)] adopted the dimensionless parameter, <math>~\beta \equiv T_\mathrm{rot}/|W_\mathrm{grav}|</math>, instead of the normalized radius, <math>~\chi</math>, as the order parameter that is varied when searching for extrema in the free-energy function.  So, in our equation that defines "free energy extrema" we need to replace <math>~\chi_\mathrm{eq}</math> with <math>~\beta_\mathrm{eq}</math>, using the relation,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\chi_3</math>
<math>~\beta \equiv \frac{T_\mathrm{rot}}{|W_\mathrm{grav}|}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{C\chi^{-2}}{3A \chi^{-1}} = \biggl( \frac{3}{5} \biggr) \frac{E_\mathrm{norm}}{E^*}
\biggl( \frac{\sin^{-1}e}{e} \biggr)^{-1} \chi^{-1}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>\Rightarrow~~~~\chi_\mathrm{eq}^{-1} </math>
  </td>
  <td align="center">
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
-\frac{1}{2} y_r^{1/2} + \frac{1}{2} E_q \, ;
\biggl( \frac{5}{3} \biggr) \frac{E^*}{E_\mathrm{norm}}  
\biggl( \frac{\sin^{-1}e}{e} \biggr)\beta_\mathrm{eq} \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
Hence, our expression for the "free energy extrema" becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\chi_4</math>
<math>~0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
-\frac{1}{2} y_r^{1/2} - \frac{1}{2} E_q \, ,
\biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \beta_\mathrm{eq} ~- 2\biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \beta_\mathrm{eq}^{2}   
</math>
~  +~ \frac{4\pi P_e}{P_\mathrm{norm}} (1-e^2)^{1/2}  
\biggl[ \biggl( \frac{3^3}{5^3} \biggr) \biggl( \frac{E_\mathrm{norm}}{E^*} \biggr)^4
\biggl( \frac{\sin^{-1}e}{e} \biggr)^{-3}\biggr] \beta_\mathrm{eq}^{-3}
- ~ \frac{3E_\mathrm{norm}}{E^*}  </math>
   </td>
   </td>
</tr>
</tr>


<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
2 \biggl\{
\beta_\mathrm{eq} \biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \biggl( \frac{1}{2} - \beta_\mathrm{eq} \biggr)   
~  + \frac{2\pi \cdot 3^3}{5^3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \biggl( \frac{E_\mathrm{norm}}{E^*} \biggr)^4
\biggl[
\beta_\mathrm{eq}^{-3}\biggl( \frac{\sin^{-1}e}{e} \biggr)^{-3} (1-e^2)^{1/2}\biggr]
- ~ \biggl( \frac{3}{2} \biggr) \frac{5^3}{2^4 \cdot 3 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr]
\biggr\} \, .</math>
  </td>
</tr>
</table>
</table>
</div>
</div>
where,
Now,
<div align="center">
<div align="center">
<table border="0" cellpadding="3">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>D_q</math>
<math>~\frac{2\pi \cdot 3^3}{5^3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \biggl( \frac{E_\mathrm{norm}}{E^*} \biggr)^4</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>\equiv</math>
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2\pi \cdot 3^3}{5^3} \biggl[ \frac{P_e}{(E^*)^4} \biggr] ( GM_\mathrm{tot}^2)^3</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2\pi \cdot 3^3}{5^3} \biggl[\biggl( \frac{2^2 \cdot 3^2}{5^3} \biggr) \frac{G^2 M_\mathrm{tot}^5}{J^2} \biggr]^{-4} ( P_e G^3 M_\mathrm{tot}^6)</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
y_r^{1/2} \biggl[ \frac{2}{\Pi} y_r^{-3/2} - 1 \biggr]^{1/2} \, ,
~\pi\biggl( \frac{5^{9}}{2^7 \cdot 3^5} \biggr) \frac{J^8 P_e }{G^5 M_\mathrm{tot}^{14}} 
= \frac{10 \pi}{3} \biggl( \frac{5^{2}}{2^2 \cdot 3} \biggr)^4 \frac{J^8 P_e }{G^5 M_\mathrm{tot}^{14}} \, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
which is the definition of the coefficient "<math>~k</math>" that is provided as equation (7) of [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline (1985)].  Hence, dropping the factor of two out front, our expression for "free energy extrema" becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>E_q</math>
<math>
\beta_\mathrm{eq} \biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \biggl( \frac{1}{2} - \beta_\mathrm{eq} \biggr)   
~  + \frac{10 \pi}{3} \biggl( \frac{5^{2}}{2^2 \cdot 3} \biggr)^4 \frac{J^8 P_e }{G^5 M_\mathrm{tot}^{14}}
\biggl[
\beta_\mathrm{eq}^{-3}\biggl( \frac{\sin^{-1}e}{e} \biggr)^{-3} (1-e^2)^{1/2}\biggr]
- ~ \frac{3}{4\pi} \biggr( \frac{5^3}{2^3 \cdot 3} \biggr) \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr]
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>0 \, .</math>
  </td>
</tr>
</table>
</div>
Finally, realizing that the square of the sound speed is related to our <math>~c_\mathrm{norm}^2</math> via the relation [note that [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline (1985)] uses <math>~a^2</math> in place of <math>~c_s^2</math>],
<div align="center">
<math>~c_s^2 = \biggl( \frac{3}{4\pi} \biggr) c_\mathrm{norm}^2 \, ,</math>
</div>
it is clear that this last form of our "free energy extrema" expression is identical to [http://adsabs.harvard.edu/abs/1985ApJ...292..181T Tohline's (1985)] virial equilibrium equation (9), which appears in print in a simpler but also more cryptic form as,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>
<math>
y_r^{1/2} \biggl[ - \frac{2}{\Pi} y_r^{-3/2} - 1 \biggr]^{1/2} \, ,
\beta_\mathrm{eq} \biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \biggl( \frac{1}{2} - \beta_\mathrm{eq} \biggr)    + kV^* - F_s^*
</math>
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>0 \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
----


<table border="1" cellpadding="5" align="center">
<tr><td>
<!-- [[Image:Weber1976_EqB3.png|500px|center]] -->
[[Image:AAAwaiting01.png|500px|center]]
</td></tr>
</table>
</table>
</div>
 
and,
Plugging the same set of modified leading coefficients into our derived expression for the free energy becomes,
<div align="center">
<div align="center">
<math>
<math>
y_r \equiv \biggl( \frac{1}{2\Pi^2} \biggr)^{1/3} \biggl\{ \biggl[ 1 + \sqrt{1-\frac{2^8}{3^3}\Pi} \biggr]^{1/3} + \biggl[ 1 - \sqrt{1-\frac{2^8}{3^3}\Pi} \biggr]^{1/3} \biggr\} \, ,
\mathfrak{G}^* = ~ \frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \chi^{-2}
-~ 3 \ln \chi +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} (1-e^2)^{1/2} \chi^3
- \frac{3}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \chi^{-1}\, .
</math>
</math>
</div>
</div>
is the real root of the cubic equation,
Now, recognize that,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\chi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\alpha \biggl( \frac{R_0}{R_\mathrm{norm}} \biggr) = \biggl( \frac{2^2}{3\cdot 5} \biggr) \alpha \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~(1 - e^2)^{1/2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{Z}{R} = \frac{\gamma}{\alpha} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{P_e}{P_\mathrm{norm}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{P_e}{P_0} \cdot \frac{P_0}{P_\mathrm{norm}} = \frac{3^4 \cdot 5^3}{2^{10} \pi} \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber}
\, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{3} \biggl( \frac{2}{5} J_\mathrm{Weber} \biggr)^2
\, ,</math>
  </td>
</tr>
</table>
</div>
where, for axisymmetric configurations (set <math>~\beta=\alpha</math> in [http://adsabs.harvard.edu/abs/1976ApJ...208..113W Weber's (1976)] equation 12),
<div align="center">
<math>J_\mathrm{Weber} \equiv \alpha^2 \Omega = \biggl( \frac{R}{R_0} \biggr)^2 (\dot\varphi_c t_0)^2 \, .</math>
</div>
Hence, our expression for the free energy may be written as,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathfrak{G}^*</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{1}{3} \biggl( \frac{2}{5} J_\mathrm{Weber}\biggr)^2 \biggl( \frac{3\cdot 5}{2^2} \biggr)^2 \alpha^{-2}
-~ 3 \ln \chi +~ \biggl( \frac{4\pi}{3} \biggr) \frac{3^4 \cdot 5^3}{2^{10} \pi} \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber} \biggl( \frac{2^2}{3\cdot 5} \biggr)^3 \alpha^2 \gamma
- \frac{3}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \biggl( \frac{3\cdot 5}{2^2} \biggr) \alpha^{-1}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\biggl( \frac{3}{2^2} \biggr)  J^2_\mathrm{Weber} \alpha^{-2}
-~ \ln \chi^3 +~ \frac{1}{2^{2} } \alpha^2 \gamma \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber} 
- \frac{3^2}{2^2} \biggl( \frac{\sin^{-1}e}{e} \biggr) \alpha^{-1} \, .
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Rightarrow~~~~\frac{4}{3} \mathfrak{G}^*</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
y^3 - \frac{4y}{\Pi} - \frac{1}{\Pi^{2}} = 0 \, .
J^2_\mathrm{Weber} \alpha^{-2}
-~ \frac{4}{3} \ln \chi^3 +~ \frac{1}{3} \alpha^2 \gamma \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber} 
- 3 \biggl( \frac{\sin^{-1}e}{e} \biggr) \alpha^{-1} \, .
</math>
</math>
  </td>
</tr>
</table>
</div>
</div>
The right-hand-side of this expression exactly matches [http://adsabs.harvard.edu/abs/1976ApJ...208..113W Weber's (1976)] "energy integral" for oblate-spheroidal configurations &#8212; see his equation (B3) for the case, <math>~e > 0</math> &#8212; except that Weber's energy integral includes an additional pair of terms (<math>~{\dot\alpha}^2 + {\dot\gamma}^2/2</math>) to account for kinetic energy associated with the overall collapse or expansion of the configuration.  [NOTE:  The logarithmic term ultimately needs to be <math>~\ln \alpha^2\gamma</math> instead of <math>~\ln\chi^3</math> in order to reflect an oblate-spheroidal, rather than spherical, volume.  This term also needs to be fixed in the above discussion of Tohline's work.]


</td></tr>
</td></tr>
Line 452: Line 2,187:
</div>
</div>


Because <math>\Pi</math> must be positive in physically realistic solutions, we conclude that the two roots involving <math>E_q</math> &#8212; that is, <math>\chi_3</math> and <math>\chi_4</math> &#8212; are imaginary and, hence, unphysical.  The other two roots  &#8212; <math>\chi_1</math> and <math>\chi_2</math> &#8212; will be real only if the arguments inside the radicals in the expression for <math>y_r</math> are positive.  That is, <math>\chi_1</math> and <math>\chi_2</math> will be real only for values of the dimensionless external pressure,
=Examples=
* Polytropic Spheres
** [[User:Tohline/SSC/Virial/Polytropes#Isolated.2C_Nonrotating_Configuration|Isolated, Nonrotating Configuration]]
** [[User:Tohline/SSC/Virial/Polytropes#Nonrotating_Configuration_Embedded_in_an_External_Medium|Nonrotating Configuration Embedded in an External Medium]]
 
* Isothermal Spheres
** [[User:Tohline/SSC/Virial/Isothermal#Isolated.2C_Nonrotating_Configuration|Isolated, Nonrotating Configuration]]
** [[User:Tohline/SSC/Virial/Isothermal#Nonrotating_Configuration_Embedded_in_an_External_Medium|Nonrotating Configuration Embedded in an External Medium]]
 
 
 
{{LSU_WorkInProgress}}
 
=BiPolytrope=
[Following a discussion that Tohline had with Kundan Kadam on <font color="red">3 July 2013</font>, we have decided to carry out a virial equilibrium and stability analysis of nonrotating bipolytropes.] 
 
We will adopt the following approach:
* Properties of the core <math>\cdots</math>  
** Uniform density, <math>\rho_c</math>;
** Polytropic constant, <math>K_c</math>, and polytropic index, <math>n_c</math>;
** Surface of the core at <math>r_i</math>;
* Properties of the envelope <math>\cdots</math>
** Uniform density, <math>\rho_e</math>;
** Polytropic constant, <math>K_e</math>, and polytropic index, <math>n_e</math>;
** Base of the core at <math>r_i</math> and surface at <math>R</math>.
 
Use the dimensionless radius,
<div align="center">
<math>\xi \equiv \frac{r}{r_i}</math>.
</div>
Then, <math>\xi_i = 1</math> and <math>\xi_s \equiv R/r_i</math>.
 
==Expressions for Mass==
Inside the core, the expression for the mass interior to any radius, <math>0 \le \xi \le 1</math>, is,
<div align="center">
<math>M_\xi = \frac{4\pi}{3} \rho_c r_i^3 \xi^3</math> .
</div>
The expression for the mass interior to any position within the envelope, <math>1 \le \xi \le \xi_s</math>, is,
<div align="center">
<div align="center">
<math>\Pi \leq \Pi_\mathrm{max} \equiv \frac{3^3}{2^8} \, .</math>
<math>M_\xi = \frac{4\pi}{3} r_i^3 \biggl[\rho_c  + \rho_e(\xi^3 - 1) \biggr]</math> .
</div>
</div>
This is the same upper limit on the external pressure that was derived above, via a different approach.
Hence, in terms of a reference mass, <math>~M_0 \equiv 4\pi \rho_0 R_0^3/3</math>, the mass of the core, the mass of the envelope, and the total mass are, respectively,


===Bounded Adiabatic===
Hence, for adiabatic configurations <math>(\delta_{1\gamma_g} = 0)</math>, equilibrium states exist at radii given by the roots of the following expression:
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~M_\mathrm{core}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
<math>
3(\gamma_g-1) B\chi^{3 -3\gamma_g} ~-~A\chi^{-1} -~ 3D\chi^3 = 0 \, .
\frac{4\pi}{3} \rho_c r_i^3  
= M_0 \biggl[ \frac{\rho_c}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr]
~~~~~\Rightarrow~~~~~  
\frac{\rho_c}{\rho_0} = \frac{M_\mathrm{core}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3} \, ;
</math>
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~M_\mathrm{env}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{4\pi}{3} r_i^3 \biggl[\rho_e (\xi_s^3 - 1) \biggr] =
M_0 (\xi_s^3 - 1) \biggl[ \frac{\rho_e}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr]
~~~~~\Rightarrow~~~~~ 
\frac{\rho_e}{\rho_0} = \frac{M_\mathrm{env}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3} (\xi_s^3 - 1)^{-1}\, ;
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~M_\mathrm{tot}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{4\pi}{3} r_i^3 \biggl[\rho_c  + \rho_e(\xi_s^3 - 1) \biggr]
= M_0 \biggl( \frac{\rho_c}{\rho_0} \biggr) \biggl( \frac{r_i}{R_0}\biggr)^3  \biggl[ 1 + \frac{\rho_e}{\rho_c} (\xi_s^3 - 1) \biggr]  \, .
</math>
  </td>
</tr>
</table>
</div>
</div>
This is precisely the same condition that derives from setting equation (3) to zero in [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth's] (1981, MNRAS, 195, 967) discussion of the "global gravitational stability for one-dimensional polyropes." The overlap with Whitworth's narative is perhaps clearer after introducing the algebraic expressions for the coefficients <math>A</math>, <math>B</math>, and <math>D</math>, dividing the equation through by <math>(3\chi^3 V_0) = (4\pi R^3)</math>, and rewriting <math>R</math> as <math>R_\mathrm{eq}</math> to obtain,
 
Following the work of [http://adsabs.harvard.edu/abs/1942ApJ....96..161S Sch&ouml;nberg &amp; Chandrasekhar (1942)] &#8212; see [[User:Tohline/SSC/Structure/LimitingMasses#Sch.C3.B6nberg-Chandrasekhar_Mass|our accompanying discussion]]  &#8212; we will discuss bipolytropic equilibrium configurations in the context of a <math>~\nu - q</math> plane where,
<table align="center" border="0" cellpadding="10">
<tr>
  <td align="right">
<math>~\nu</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{M_\mathrm{core}}{M_\mathrm{tot}} \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~q</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{r_i}{R} = \frac{1}{\xi_s} \, .</math>
  </td>
</tr>
</table>
 
With this in mind we can write,
<div align="center">
<math>\frac{\rho_e}{\rho_c} =  \frac{M_\mathrm{env}}{M_\mathrm{core}} (\xi_s^3 - 1)^{-1}
=  \frac{q^3 (1-\nu)}{\nu (1-q^3)} </math> ,
</div>
and,
<div align="center">
<div align="center">
<math>\nu \biggl(\frac{1-q^3}{q^3}\biggr) \biggl( \frac{\rho_e}{\rho_c} \biggr)  =  (1-\nu)
~~~~~\Rightarrow~~~~~
\nu = \biggl[ 1 + \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1-q^3}{q^3}\biggr) \biggr]^{-1} \, .</math>
</div>
==Energy Expressions==
The gravitational potential energy of the bipolytropic configuration is obtained by integrating over the following differential energy contribution,
<div align="center">
<math>dW_\mathrm{grav} = - \biggl( \frac{GM_r}{r} \biggr) dm</math> .
</div>
Hence,
<table border="0" align="center">
<tr>
  <td align="right">
<math>~W_\mathrm{grav} = W_\mathrm{core} + W_\mathrm{env}</math>
  </td>
  <td align="left">
<math>
= - G \biggl\{ \int_0^{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_c dr + \int^R_{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_e dr \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="left">
<math>
= - G \biggl\{ \int_0^1 \biggl( \frac{4\pi }{3} \rho_c r_i^3 \xi^3 \biggr) 4\pi r_i^2 \rho_c \xi d\xi
+ \int_1^{\xi_s} \frac{4\pi}{3} \rho_c r_i^3 \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] 4\pi r_i^2 \rho_e \xi d\xi \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="left">
<math>
= - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \int_0^1  \xi^4 d\xi
+ \int_1^{\xi_s} \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] \biggl( \frac{\rho_e}{\rho_c} \biggr) \xi d\xi \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="left">
<math>
<math>
P_e = K \biggl( \frac{3M}{4\pi R_\mathrm{eq}^3} \biggr)^{\gamma_g} - \biggl( \frac{3GM^2}{20\pi R_\mathrm{eq}^4} \biggr) \, .
= - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \frac{1}{5}
+ \biggl( \frac{\rho_e}{\rho_c} \biggr) \int_1^{\xi_s} \xi d\xi
+ \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \int_1^{\xi_s} (\xi^3 - 1) \xi d\xi \biggr\}
</math>
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="left">
<math>
= - \frac{3GM^2_\mathrm{tot}}{R} \biggl( \frac{M_\mathrm{core}}{M_\mathrm{tot}} \biggr)^2 \xi_s \biggl\{ \frac{1}{5}
+ \frac{1}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^2 - 1)
+ \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \frac{1}{5}(\xi_s^5 - 1) - \frac{1}{2}(\xi_s^2-1) \biggr] \biggr\}
</math>
  </td>
</tr>
</table>
I like the form of this expression.  The leading term, which scales as <math>~R^{-1}</math>, encapsulates the behavior of the gravitational potential energy for a given choice of the internal structure, namely, a given choice of <math>~\xi_s</math>, <math>~\nu</math>, and density ratio <math>~(\rho_e/\rho_c)</math>.  Actually, only two internal structural parameters need to be specified &#8212; <math>~\xi_s</math> and <math>~f_c</math>; from these two, the expressions shown above allow the determination of both <math>~(\rho_e/\rho_c)</math> and <math>~\nu</math>.  Keeping in mind our desire to discuss the properties of bipolytropes in the context of the <math>~\nu - q</math> plane introduced by [http://adsabs.harvard.edu/abs/1942ApJ....96..161S Sch&ouml;nberg &amp; Chandrasekhar (1942)], we will rewrite this expression for the gravitational potential energy as,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~W_\mathrm{grav}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{3}{5} \biggl( \frac{GM_\mathrm{tot}^2}{R} \biggr) \frac{\nu^2}{q} \cdot f\biggl(q, \frac{\rho_e}{\rho_c} \biggr) \, ,</math>
  </td>
</tr>
</table>
</div>
</div>
This exactly matches equation (5) of [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth], which reads:
where,
<div align="center">
<div align="center">
<table border="2">
<table border="0" cellpadding="5" align="center">
<tr><td>
 
[[File:Whitworth1981Eq5.jpg|500px|center|Whitworth (1981, MNRAS, 195, 967)]]
<tr>
</td></tr>
  <td align="right">
<math>~f\biggl(q, \frac{\rho_e}{\rho_c} \biggr)</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>
1 + \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1}{q^2} - 1 \biggr)
+ \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \biggl( \frac{1}{q^5} - 1 \biggr) - \frac{5}{2}\biggl(\frac{1}{q^2} - 1 \biggr) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
1 + \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \frac{1}{q^5} \biggl[ (q^3- q^5 )
+ \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{2}{5} -q^3 + \frac{3}{5}q^5\biggr) \biggr] \, .
</math>
  </td>
</tr>
</table>
</table>
</div>
</div>
Ideally we would like to invert this equation to obtain an analytic expression for the configuration's equilibrium radius in terms of the physical parameters, <math>M</math>, <math>K</math>, and <math>P_e</math>.  However, this cannot be accomplished for an arbitrary value of the adiabatic exponent, <math>\gamma_g</math>.
 
=Other?=
 
Show that derived result is, essentially, the Bonnor-Ebert sphere.  Should we also draw analogy with collapse of isothermal core of red giant, or leave this to the later stability discussion?
=See Also=
<ul>
<li>[[User:Tohline/SphericallySymmetricConfigurations/IndexFreeEnergy#Index_to_Free-Energy_Analyses|Index to a Variety of Free-Energy and/or Virial Analyses]]</li>
</ul>
 
 


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 01:11, 30 May 2017


Virial Equilibrium of Spherically Symmetric Configurations

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Free Energy Expression

Review

As has been introduced elsewhere in a more general context, associated with any isolated, self-gravitating, gaseous configuration we can identify a total Gibbs-like free energy, <math>\mathfrak{G}</math>, given by the sum of the relevant contributions to the total energy of the configuration,

<math> \mathfrak{G} = W_\mathrm{grav} + \mathfrak{S}_\mathrm{therm} + T_\mathrm{kin} + P_e V + \cdots </math>

Here, we have explicitly included the gravitational potential energy, <math>~W_\mathrm{grav}</math>, the ordered kinetic energy, <math>~T_\mathrm{kin}</math>, a term that accounts for surface effects if the configuration of volume <math>~V</math> is embedded in an external medium of pressure <math>~P_e,</math> and <math>~\mathfrak{S}_\mathrm{therm}</math>, the reservoir of thermodynamic energy that is available to perform work as the system expands or contracts. A mathematical expression encapsulating the physical definition of each of these energy terms, in full three-dimensional generality, can be found in our introductory discussion of the scalar virial theorem and the free-energy function.

Expressions for Various Energy Terms

We begin, here, by deriving an expression for each of the terms in the free-energy function as appropriate for spherically symmetric systems. In deriving each expression, we keep in mind two issues: First, for a given size system a determination of each term's total contribution to the free energy generally will involve integration through the entire volume of the configuration, effectively "summing up" the differential mass in each radial shell,

<math> dm = \rho(\vec{x}) d^3x = 4\pi \rho(r) r^2 dr \, , </math>

weighted by some specific energy expression. Second, each term must be formulated in such a way that it is clear how the energy contribution depends on the overall system size.

Volume Integrals

We note, first, that the mass enclosed within each interior radius, <math>~r</math>, is

<math>~M_r(r) = \int\limits_V dm</math>

<math>~=</math>

<math>~ \int_0^r 4\pi r^2 \rho dr \, .</math>

Hence, if the volume of the configuration extends out to a radius denoted by <math>~R_\mathrm{limit}</math>, the configuration mass is,

<math>~M_\mathrm{limit}</math>

<math>~=</math>

<math>~ \int_0^{R_\mathrm{limit}} 4\pi r^2 \rho dr \, .</math>

NOTE: The following considerations have led us to formally draw a distinction between <math>~M_\mathrm{limit}</math> and the "total" mass, <math>~M_\mathrm{tot}</math>, that we use (see below) for normalization.

Isolated Polytropes: For isolated polytropes, the limit of integration, <math>~R_\mathrm{limit}</math>, will be the natural edge of the configuration, where the pressure and mass-density drop to zero. In this case, <math>~M_\mathrm{limit}</math> quite naturally corresponds to the total mass of the configuration.

Pressure-Truncated Polytropes: But, a configuration embedded in an external medium of pressure, <math>~P_e</math>, will have a (pressure-truncated) surface whose radius, <math>~R_\mathrm{limit}</math>, corresponds to the radial location at which the configuration's internal pressure drops to a value that equals <math>~P_e</math>. In this case as well, one might choose to refer to <math>~M_\mathrm{limit}</math> as the total mass; on the other hand, it might be more useful to distinguish <math>~M_\mathrm{limit}</math> from <math>~M_\mathrm{tot}</math>, continuing to rely on <math>~M_\mathrm{tot}</math> to represent the mass of the corresponding isolated polytrope.

BiPolytropes: When discussing bipolytropes, the limit of integration, <math>~R_\mathrm{limit}</math>, will naturally refer to the radial location that defines the outer edge of the configuration's "core" and, at the same time, identifies the radial "interface" between the bipolytrope's core and its envelope. In this case, <math>~M_\mathrm{limit}</math> corresponds to the mass of the core rather than to the total mass of the bipolytropic configuration.


Confinement by External Pressure: For spherically symmetric configurations, the energy term due to confinement by an external pressure can be expressed, simply, in terms of the configuration's radius, <math>~R_\mathrm{limit}</math>, as,

<math>~P_e V</math>

<math>~=</math>

<math>~P_e \int_0^{R_\mathrm{limit}} 4\pi r^2 dr = \frac{4\pi}{3} P_e R_\mathrm{limit}^3 \, .</math>

Gravitational Potential Energy: From our discussion of the scalar virial theorem — see, specifically, the reference to Equation (18), on p. 18 of [EFE] — the gravitational potential energy is given by the expression,

<math> W_\mathrm{grav} = - \int\limits_V \rho x_i \frac{\partial\Phi}{\partial x_i} d^3 x = - \int\limits_V \vec{r} \cdot \nabla\Phi dm = - \int_0^{R_\mathrm{limit}} \biggl( r \frac{d\Phi}{dr} \biggr) dm \, . </math>

For spherically symmetric systems, the

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

becomes,

<math>~\frac{1}{r^2} \frac{d}{dr} \biggl( r^2 \frac{d\Phi}{dr} \biggr) </math>

<math>~=</math>

<math>~4\pi G \rho(r) \, , </math>

which implies,

<math>~r^2 \frac{d\Phi}{dr} </math>

<math>~=</math>

<math>~\int_0^r 4\pi G \rho(r) r^2 dr = GM_r(r) \, .</math>

Hence — see, also, p. 64, Equation (12) of [C67] — the desired expression for the gravitational potential energy is,

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~ - \int_0^{R_\mathrm{limit}} \biggl( \frac{GM_r}{r} \biggr) dm = - \int_0^{R_\mathrm{limit}} \frac{G}{r}\biggl[\int_0^r 4\pi r^2 \rho dr \biggr] 4\pi r^2 \rho dr \, .</math>


Also, as pointed out by [C67] — see p. 64, Equation (16) — it may sometimes prove advantageous to recognize that, if a spherically symmetric system is in hydrostatic balance, an alternate expression for the total gravitational potential energy is,

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~ + \frac{1}{2} \int_0^{R_\mathrm{limit}} \Phi(r) dm \, .</math>


Rotational Kinetic Energy: We will also consider a system that is rotating with a specified simple angular velocity profile, <math>~\dot\varphi(\varpi)</math>, in which case, from our discussion of the scalar virial theorem — see, specifically, the reference to Equation (8), on p. 16 of EFE — the (ordered) kinetic energy,

<math>~T_\mathrm{kin}</math>

<math>~=</math>

<math>~ \frac{1}{2} \int\limits_V \rho |\vec{v} |^2 d^3x = \frac{1}{2} \int\limits_V |\vec{v} |^2 dm \, ,</math>

is entirely rotational kinetic energy, specifically,

<math>~T_\mathrm{kin} = T_\mathrm{rot}</math>

<math>~=</math>

<math>~ \frac{1}{2} \int\int\int \dot\varphi^2 \varpi^2 dm = \frac{1}{2} \int_0^{R_\mathrm{limit}} \dot\varphi^2 \varpi^2 \int_{-\sqrt{{R_\mathrm{limit}}^2 - \varpi^2}}^{\sqrt{{R_\mathrm{limit}}^2 - \varpi^2}} \rho(r(\varpi,z)) 2\pi \varpi d\varpi dz\, .</math>

Reservoir of Thermodynamic Energy: As has been explained in our introductory discussion of the Gibbs-like free energy, formulation of an expression for the reservoir of thermodynamic energy, <math>~\mathfrak{S}_\mathrm{therm}</math>, depends on whether the system is expected to evolve adiabatically or isothermally. For isothermal systems,

<math> \mathfrak{S}_\mathrm{therm} ~~\rightarrow ~~\mathfrak{S}_I = + \int\limits_V c_s^2 \ln \biggl(\frac{\rho}{\rho_\mathrm{norm}}\biggr) dm = c_s^2 \int_0^{R_\mathrm{limit}} \ln \biggl(\frac{\rho}{\rho_\mathrm{norm}}\biggr) 4\pi r^2 \rho dr \, , </math>

where, <math>~c_s</math> is the isothermal sound speed and <math>~\rho_\mathrm{norm}</math> is a (as yet unspecified) reference mass density; while, for adiabatic systems,

<math> \mathfrak{S}_\mathrm{therm} ~~\rightarrow ~~ \mathfrak{S}_A = + \int\limits_V \frac{1}{({\gamma_g}-1)} \biggl( \frac{P}{\rho} \biggr) dm = \frac{1}{({\gamma_g}-1)} \int_0^{R_\mathrm{limit}} 4\pi r^2 P dr

\, ,</math>

where, <math>~P(r)</math> is the system's pressure distribution and <math>~\gamma_g</math> is the specified adiabatic index.

Normalizations

Our Choices

It is appropriate for us to define some characteristic scales against which various physical parameters can be normalized — and, hence, their relative significance can be specified or measured — as the free energy of various systems is examined. As the system size is varied in search of extrema in the free energy, we generally will hold constant the total system mass and the specific entropy of each fluid element. (When isothermal rather than adiabatic variations are considered, the sound speed rather than the specific entropy will be held constant.) Hence, following the lead of both Horedt (1970) and Whitworth (1981), we will express the various characteristic scales in terms of the constants, <math>~G, M_\mathrm{tot},</math> and the polytropic constant, <math>~K.</math> Specifically, we will normalize all length scales, pressures, energies, mass densities, and the square of the speed of sound by, respectively,

Adopted Normalizations

Adiabatic Cases

Isothermal Case <math>~(\gamma = 1; K = c_s^2)</math>

<math>~R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \biggl( \frac{G}{K} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr]^{1/(4-3\gamma)} </math>

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{K^4}{G^{3\gamma} M_\mathrm{tot}^{2\gamma}} \biggr]^{1/(4-3\gamma)} </math>


<math>~E_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ P_\mathrm{norm} R_\mathrm{norm}^3 = \biggl[ KG^{3(1-\gamma)}M_\mathrm{tot}^{6-5\gamma} \biggr]^{1/(4-3\gamma)} </math>

<math>~\rho_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{3M_\mathrm{tot}}{4\pi R_\mathrm{norm}^3} = \frac{3}{4\pi} \biggl[ \frac{K^3}{G^3 M_\mathrm{tot}^2} \biggr]^{1/(4-3\gamma )} </math>

<math>~c^2_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{P_\mathrm{norm}}{\rho_\mathrm{norm}} = \frac{4\pi}{3} \biggl[ \frac{K}{(G^3 M_\mathrm{tot}^2)^{\gamma-1}} \biggr]^{1/(4-3\gamma )} </math>

<math>~R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{G M_\mathrm{tot}}{c_s^2} </math>

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{c_s^8}{G^{3} M_\mathrm{tot}^{2}} </math>


<math>~E_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ M_\mathrm{tot} c_s^2 </math>

<math>~\rho_\mathrm{norm}</math>

<math>~\equiv</math>

<math> \frac{3}{4\pi} \biggl[ \frac{c_s^6}{G^3 M_\mathrm{tot}^2} \biggr] </math>

<math>~c^2_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ \biggl( \frac{4\pi}{3} \biggr) c_s^2 </math>

Note that, given the above definitions, the following relations hold:

<math>~E_\mathrm{norm} = P_\mathrm{norm} R_\mathrm{norm}^3 = \frac{G M_\mathrm{tot}^2}{ R_\mathrm{norm}} = \biggl( \frac{3}{4\pi} \biggr) M_\mathrm{tot} c_\mathrm{norm}^2</math>

It should be emphasized that, as we discuss how a configuration's free energy varies with its size, the variable <math>~R_\mathrm{limit}</math> will be used to identify the configuration's size whether or not the system is in equilibrium, and the parameter,

<math>~\chi \equiv \frac{R_\mathrm{limit}}{R_\mathrm{norm}} \, ,</math>

will be used to identify the size as referenced to <math>~R_\mathrm{norm}</math>. When an equilibrium configuration is identified <math>~(R_\mathrm{limit} \rightarrow R_\mathrm{eq})</math>, we will affix the subscript "eq," specifically,

<math>~\chi_\mathrm{eq} \equiv \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \, .</math>

Choices Made by Other Researchers

As is detailed in a related discussion, our definitions of <math>~R_\mathrm{norm}</math> and <math>~P_\mathrm{norm}</math> are close, but not identical, to the scalings adopted by Horedt (1970) and by Whitworth (1981). The following relations can be used to switch from our normalizations to theirs:

Hoerdt's (1970) Normalization

<math>~\biggl( \frac{R_\mathrm{Hoerdt}}{R_\mathrm{norm}} \biggr)^{4-3\gamma}</math>

<math>~=</math>

<math>~ \frac{(\gamma-1)}{\gamma} \biggl( 4\pi \biggr)^{\gamma-1}</math>

<math>~\biggl( \frac{P_\mathrm{Hoerdt}}{P_\mathrm{norm}} \biggr)^{4-3\gamma}</math>

<math>~=</math>

<math>~ \biggl[\frac{\gamma}{(\gamma-1)} \biggr]^{3\gamma} \biggl( \frac{1}{4\pi} \biggr)^{\gamma}</math>

     

Whitworth's (1981) Normalization

<math>~\biggl( \frac{R_\mathrm{rf}}{R_\mathrm{norm}} \biggr)^{4-3\gamma}</math>

<math>~=</math>

<math>~ \frac{1}{5\pi} \biggl( \frac{4\pi}{3} \biggr)^\gamma</math>

<math>~\biggl( \frac{P_\mathrm{rf}}{P_\mathrm{norm}} \biggr)^{4-3\gamma}</math>

<math>~=</math>

<math>~ 2^{-2(4+\gamma)} \biggl( \frac{3^4 \cdot 5^3}{\pi} \biggr)^\gamma</math>

It is also worth noting how the length-scale normalization that we are adopting here relates to the characteristic length scale,

<math>~a_n \equiv \biggl[ \frac{1}{4\pi G} \biggl( \frac{H_c}{\rho_c} \biggr) \biggr]^{1/2} \, ,</math>

that has classically been adopted in the context of the Lane-Emden equation, the solution of which provides a detailed description of the internal structure of spherical polytropes for a wide range of values of the polytropic index, <math>~n</math>. Recognizing that, via the polytropic equation of state, the pressure, density, and enthalpy of every element of fluid are related to one another via the expressions,

<math>~H\rho = (n+1)P</math>     … and …      <math>P = K\rho^{1+1/n} \, ,</math>

the specific enthalpy at the center of a polytropic sphere, <math>~H_c/\rho_c</math>, can be rewritten in terms of <math>~K</math> and <math>~\rho_c</math> to give,

<math>~a_n = \biggl[ \frac{(n+1)K}{4\pi G} \rho_c^{(1/n) -1} \biggr]^{1/2} \, ,</math>

which is the definition of this classical length scale introduced by [C67] (see, specifically, his equation 10 on p. 87). Switching from <math>~n</math> to the associated adiabatic exponent via the relation, <math>~\gamma = 1+1/n ~~~\Rightarrow~~~ n = 1/(\gamma-1)</math>, we see that,

<math>~\biggl( \frac{a_n}{R_\mathrm{norm}} \biggr)^2</math>

<math>~=</math>

<math>~\biggl( \frac{\gamma}{\gamma-1} \biggr) \frac{K \rho_c^{(\gamma-2)}}{4\pi G} \cdot \frac{1}{R_\mathrm{norm}^2}</math>

 

<math>~=</math>

<math>~\frac{1}{4\pi}\biggl( \frac{\gamma}{\gamma-1} \biggr) \frac{K }{G} \biggl( \frac{\rho_c}{\bar\rho} \biggr)^{(\gamma-2)} \biggl( \frac{3M_\mathrm{tot}}{4\pi R_\mathrm{eq}^3} \biggr)^{(\gamma-2)} \cdot \frac{1}{R_\mathrm{norm}^2} </math>

 

<math>~=</math>

<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{3}{4\pi } \cdot \frac{\rho_c}{\bar\rho} \biggr)^{\gamma-2} \biggl[ \frac{K M_\mathrm{tot}^{\gamma-2} }{G} \biggr] \biggl( \frac{R_\mathrm{norm}}{R_\mathrm{eq}} \biggr)^{3{(\gamma-2)}} \cdot \frac{1}{R_\mathrm{norm}^{3\gamma-4}} </math>

 

<math>~=</math>

<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{3}{4\pi } \cdot \frac{\rho_c}{\bar\rho} \biggr)^{2-\gamma} \chi_\mathrm{eq}^{6-3\gamma} \biggl[ \frac{K M_\mathrm{tot}^{\gamma-2} }{G} \biggr] \cdot \biggl[ \biggl( \frac{G}{K} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr] </math>

 

<math>~=</math>

<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{3}{4\pi } \cdot \frac{\rho_c}{\bar\rho} \biggr)^{2-\gamma} \chi_\mathrm{eq}^{6-3\gamma} \, . </math>

Notice that, written in this manner, the scale length, <math>~a_n</math>, cannot actually be determined unless the normalized equilibrium radius, <math>~\chi_\mathrm{eq}</math>, is known. We will encounter analogous situations whenever the free energy function is used to identify the physical parameters that define equilibrium configurations — key attributes of a system that should be held fixed as the system size (or some other order parameter) is varied cannot actually be evaluated until an extremum in the free energy is identified and the corresponding value of <math>~\chi_\mathrm{eq}</math> is known. Because solutions of the Lane-Emden equation directly provide detailed force-balance models of polytropic spheres, [C67] did not encounter this issue. As we have discussed elsewhere, the equilibrium radius of a polytropic sphere is identified as the radial location,

<math>~\xi_1 = \frac{R_\mathrm{eq}}{a_n} \, ,</math>

at which the Lane-Emden function, <math>~\Theta_H(\xi)</math>, first goes to zero. Bypassing the free-energy analysis and using knowledge of <math>~\xi_1</math> to identify the equilibrium radius — specifically, setting,

<math>~\chi_\mathrm{eq}</math>

<math>~=</math>

<math>~\frac{R_\mathrm{eq}}{R_\mathrm{norm}} = \xi_1 \biggl(\frac{a_n}{R_\mathrm{norm}} \biggr) \, ,</math>

we can extend the above analysis to obtain,

<math>~\biggl( \frac{a_n}{R_\mathrm{norm}} \biggr)^2</math>

<math>~=</math>

<math>~\frac{1}{4\pi} \biggl( \frac{\gamma}{\gamma-1} \biggr) \biggl( \frac{4\pi }{3} \cdot \frac{\rho_c}{\bar\rho} \biggr)^{2-\gamma} \biggl[ \xi_1 \biggl(\frac{a_n}{R_\mathrm{norm}} \biggr) \biggr]^{6-3\gamma} </math>

<math>\Rightarrow~~~~~\biggl( \frac{a_n}{R_\mathrm{norm}} \biggr)^{4-3\gamma}</math>

<math>~=</math>

<math>~4\pi \biggl( \frac{\gamma-1}{\gamma} \biggr) \biggl( \frac{4\pi }{3} \cdot \frac{\rho_c}{\bar\rho} \cdot \xi_1^3\biggr)^{\gamma-2} \, . </math>

Implementation

Normalize

We will now judiciously introduce our adopted normalizations into the above-defined free-energy term expressions, using asterisks to denote dimensionless variables that have been accordingly normalized; for example,

<math> r^* \equiv \frac{r}{R_\mathrm{norm}} \, , ~~~~~~ P^* \equiv \frac{P}{P_\mathrm{norm}} \, , ~~~~~~ </math>         and       <math>\rho^* \equiv \frac{\rho}{\rho_\mathrm{norm}} \, . </math>

Normalized Mass:

<math>~M_r(r^*) </math>

<math>~=</math>

<math> R_\mathrm{norm}^3 \rho_\mathrm{norm} \int_0^{r^*} 4\pi (r^*)^2 \rho^* dr^* = M_\mathrm{tot} \int_0^{r^*} 3(r^*)^2 \rho^* dr^* \, . </math>

Confinement by External Pressure (Normalized Volume):

<math>~P_e V</math>

<math>~=</math>

<math>~E_\mathrm{norm} \biggl[ \frac{4\pi}{3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \biggl(\frac{R_\mathrm{limit}}{R_\mathrm{norm}}\biggr)^3 \biggr] \, .</math>

Normalized Gravitational Potential Energy:

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math> - 4\pi GM_\mathrm{tot} R_\mathrm{norm}^2 \rho_\mathrm{norm} \int_0^{\chi=R_\mathrm{limit}^*} \biggl[\frac{M_r(r^*)}{M_\mathrm{tot}} \biggr] r^* \rho^* dr^* </math>

 

<math>~=</math>

<math> - E_\mathrm{norm} \int_0^{\chi = R_\mathrm{limit}^*} 3\biggl[\frac{M_r(r^*)}{M_\mathrm{tot}} \biggr] r^* \rho^* dr^* \, . </math>

Normalized Reservoir of Thermodynamic Energy:

<math>~\mathfrak{S}_I</math>

<math>~=</math>

<math>~E_\mathrm{norm} \int_0^{\chi=R_\mathrm{limit}^*} 3 \ln (\rho^*) (r^*)^2 \rho^* dr^* \, ,</math>

and,

<math>~\mathfrak{S}_A</math>

<math>~=</math>

<math>~\frac{E_\mathrm{norm}}{({\gamma_g}-1)} \int_0^{\chi=R_\mathrm{limit}^*} 4\pi (r^*)^2 P^* dr^* \, .</math>

Normalized Rotational Kinetic Energy:

<math>~T_\mathrm{rot}</math>

<math>~=</math>

<math>~ \pi \dot\varphi_c^2 R_\mathrm{norm}^5 \rho_\mathrm{norm} \int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3 d\varpi^* \int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}} (\rho^*) dz^* </math>

 

<math>~=</math>

<math>~ \biggl( \frac{5^2\pi}{2^2} \biggr) \biggl[ \frac{J^2 R_\mathrm{norm} \rho_\mathrm{norm}}{M_\mathrm{tot}^2} \biggr] \chi_\mathrm{eq}^{-4} \int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3 d\varpi^* \int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}} (\rho^*) dz^* </math>

 

<math>~=</math>

<math>~ \biggl( \frac{3\cdot 5^2}{2^4} \biggr) \biggl[ \frac{J^2}{M_\mathrm{tot}} \biggl(\frac{E_\mathrm{norm} }{G M_\mathrm{tot}^2 }\biggr)^2 \biggr] \chi_\mathrm{eq}^{-4} \int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3 d\varpi^* \int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}} (\rho^*) dz^* </math>

 

<math>~=</math>

<math>~ E_\mathrm{norm} \biggl( \frac{3^2\cdot 5^2}{2^6 \pi} \biggr) \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \chi_\mathrm{eq}^{-4} \int_0^{\chi=R_\mathrm{limit}^*} \biggl[ \frac{\dot\varphi^2}{\dot\varphi_c^2} \biggr] (\varpi^*)^3 d\varpi^* \int_{-\sqrt{\chi^2 - (\varpi^*)^2}}^{\sqrt{\chi^2 - (\varpi^*)^2}} (\rho^*) dz^* \, , </math>

where,

<math>\dot\varphi_c \equiv \frac{5J}{2M_\mathrm{tot} R_\mathrm{eq}^2} = \frac{5}{2} \biggl[ \frac{J}{M_\mathrm{tot} R_\mathrm{norm}^2} \biggr] \chi_\mathrm{eq}^{-2} \, ,</math>

is a characteristic rotation frequency in the equilibrium configuration whose value is set once the system's total angular momentum, <math>~J</math>, is specified.

Separate Time & Space

Our intent is to vary the size of the configuration <math>~(R_\mathrm{limit})</math> while holding the (properly normalized) internal structural profile fixed, so let's separate the spatial integral over the (fixed) structural profile from the time-varying configuration size. Making use of the dimensionless internal coordinates,

<math>~x \equiv \frac{r}{R_\mathrm{limit}} \, ,~~~~w \equiv \frac{\varpi}{R_\mathrm{limit}} \, , ~~~~\zeta \equiv \frac{z}{R_\mathrm{limit}} \, , </math>

that always run from zero to one, we have,

<math>~r^*</math>

<math>~\rightarrow~</math>

<math> ~x \biggl( \frac{R_\mathrm{limit}}{R_\mathrm{norm}} \biggr) = x \chi \, ; </math>    and, likewise,     <math> ~~~~\varpi^* ~\rightarrow~ w \chi \, ; ~~~~z^* ~\rightarrow~ \zeta \chi \, ; </math>

<math>~\rho^*</math>

<math>~\rightarrow~</math>

<math> \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] \biggl( \frac{\bar\rho}{\rho_\mathrm{norm}} \biggr) = \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] \biggl( \frac{M_\mathrm{limit}/R_\mathrm{limit}^3}{M_\mathrm{tot}/R_\mathrm{norm}^3} \biggr) = \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \chi^{-3} = \frac{\rho_c}{\bar\rho} \biggl[ \frac{\rho(x)}{\rho_c} \biggr] \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \chi^{-3} \, ; </math>

<math>~P^*</math>

<math>~\rightarrow~</math>

<math> \biggl[ \frac{P(x)}{P_c} \biggr] \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr) = \biggl[ \frac{P(x)}{P_c} \biggr] \biggl( \frac{K\rho_c^\gamma}{P_\mathrm{norm}} \biggr) = \biggl[ \frac{P(x)}{P_c} \biggr] \biggl( \frac{\rho_c}{\bar\rho} \biggr)^\gamma \biggl[ \frac{(3M_\mathrm{limit}/4\pi R_\mathrm{limit}^3)^\gamma}{K^{-1}P_\mathrm{norm}} \biggr] </math>

 

    

<math> = \biggl[ \frac{P(x)}{P_c} \biggr] \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]^\gamma \biggl[ \frac{K M_\mathrm{tot}^\gamma}{P_\mathrm{norm} R_\mathrm{norm}^{3\gamma}} \biggr] \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma \biggl( \frac{R_\mathrm{limit}}{R_\mathrm{norm}} \biggr)^{-3\gamma} = \biggl[ \frac{P(x)}{P_c} \biggr] \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]^\gamma \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma \chi^{-3\gamma} \, , </math>

<math>~\frac{\dot\varphi}{\dot\varphi_c}</math>

<math>~\rightarrow~</math>

<math> \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{limit}} \biggr] \biggl( \frac{\dot\varphi_\mathrm{limit}}{\dot\varphi_c}\biggr) = \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{limit}} \biggr] \biggl( \frac{R_\mathrm{limit}}{R_\mathrm{eq}}\biggr)^{-2} = \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{limit}} \biggr] \chi_\mathrm{eq}^{2} \chi^{-2} \, . </math>

Summary of Normalized Expressions

Hence, our normalized expressions become,

Normalized Expressions

<math>~\frac{M_r(x)}{M_\mathrm{tot}} </math>

<math>~=</math>

<math>~ \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \int_0^{x} 3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr] dx \, ,</math>

<math>~\frac{P_e V}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~ \frac{4\pi}{3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \chi^3 \, ,</math>

<math>~\frac{W_\mathrm{grav}}{E_\mathrm{norm}}</math>

<math>~=</math>

<math> - \chi^{-1} \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \int_0^{1} 3x \biggl[\frac{M_r(x)}{M_\mathrm{tot}} \biggr] \biggl[ \frac{\rho(x)}{\rho_c} \biggr] dx </math>

 

<math>~=</math>

<math> - \frac{3}{5} \chi^{-1} \biggl( \frac{\rho_c}{\bar\rho} \biggr)^2_\mathrm{eq} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^2 \int_0^{1} 5x \biggl\{\int_0^{x} 3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr] dx\biggr\} \biggl[ \frac{\rho(x)}{\rho_c} \biggr] dx \, , </math>

<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~\frac{4\pi}{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma} \biggl\{ \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]_\mathrm{eq}^{\gamma} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma \int_0^{1} 3x^2 \biggl[ \frac{P(x)}{P_c} \biggr] dx \biggr\} \, ,</math>

<math>~\frac{\mathfrak{S}_I}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~ \int_0^{1} \biggl\{ \ln \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] -3\ln \biggl[ \frac{R_\mathrm{edge}}{R_\mathrm{norm}} \biggr] \biggr\} 3 x^2 \biggl[ \frac{\rho(x)}{\bar\rho} \biggr] dx </math>

 

<math>~=</math>

<math>~-3 \ln \chi + \mathrm{constant} \, , </math>

<math>~\frac{T_\mathrm{rot}}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~ \chi^{-2} \biggl( \frac{3^2\cdot 5^2}{2^6 \pi} \biggr) \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \int_0^{1} \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{edge}} \biggr]^2 w^3 dw \int_{-\sqrt{1 - w^2}}^{\sqrt{1 - w^2}} \biggl[ \frac{\rho(w,\zeta)}{\rho_c} \biggr] d\zeta \, . </math>

[NOTE to self (21 September 2014): The expressions for <math>~\mathfrak{S}_I</math> and <math>~T_\mathrm{rot}</math> may not properly account for ratio of M_limit to M_tot.]


It should be emphasized that the coefficient involving the density ratio, <math>~(\rho_c/\bar\rho)</math>, that lies outside of the integral in most of these expressions depends only on the internal structure, and not the overall size, of the configuration. It can therefore be evaluated at any time. We usually will choose to evaluate this coefficient in an equilibrium state, that is, when <math>~R_\mathrm{limit} \rightarrow R_\mathrm{eq}</math>. Accordingly, the subscript "eq" has been attached to this coefficient. The inverse of this density ratio can be obtained from the integral expression for <math>~M_r</math> by recognizing that <math>~M_r \rightarrow M_\mathrm{limit}</math> when the upper limit on the integral <math>~x \rightarrow 1</math>. Hence,

<math>~\biggl(\frac{\rho_c}{\bar\rho} \biggr)^{-1}_\mathrm{eq} </math>

<math>~=</math>

<math>~ \int_0^{1} 3x^2 \biggl[ \frac{\rho(x)}{\rho_c} \biggr]_\mathrm{eq} dx \, .</math>

This coefficient also may be rewritten in terms of the central pressure in the equilibrium state; specifically, using a sequence of steps similar to the ones that were used, above, in rewriting <math>~P^*</math>, we can write,

<math> \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]_\mathrm{eq}^{\gamma} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^\gamma </math>

<math>~=</math>

<math>~\biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr) \chi^{3\gamma} \biggr]_\mathrm{eq} \, .</math>

Looking Ahead to Bipolytropes

ASIDE: When we discuss the free energy of bipolytropic configurations, we will need to divide the expression for <math>~\mathfrak{S}_A/E_\mathrm{norm}</math> into two parts — one accounting for the reservoir of thermodynamic energy in the bipolytrope's "core" and one accounting for the reservoir of thermodynamic energy in the bipolytrope's "envelope." It is useful to develop this two-part expression here, while the definition of <math>~\mathfrak{S}_A</math> is fresh in our minds and to show how the two-part expression reduces to the simpler expression for <math>~\mathfrak{S}_A/E_\mathrm{norm}</math>, just derived, when there is no distinction drawn between the properties of the core and the envelope.


In what follows, we will use the subscript core (or "c") when referencing physical properties of the bipolytrope's core and the subscript env (or "e") for the envelope; and, as above, we will use <math>~x \equiv r/R_\mathrm{edge}</math> to denote the dimensionless radial location within a configuration of radius, <math>~R_\mathrm{edge}</math>. The dimensionless radial coordinate, <math>~q \equiv x_i = r_i/R_\mathrm{edge}</math>, will identify the radial interface where the core meets the envelope; that is, <math>~q</math> will identify both the outer edge of the core and the inner edge of the envelope. In general, separate expressions will define the run of pressure through the core and through the envelope. We can assume that, for the core, the pressure drops monotonically from a value of <math>~P_0</math> at the center of the configuration according to an expression of the form,

<math>~P_\mathrm{core}(x) = P_0 [1 - p_c(x)]</math>      for      <math>~0 \leq x \leq q \, ,</math>

and that, for the envelope, the pressure drops monotonically from a value of <math>~P_{ie}</math> at the interface according to an expression of the form,

<math>~P_\mathrm{env}(x) = P_{ie} [1 - p_e(x)]</math>      for      <math>~q \leq x \leq 1 \, ,</math>

where <math>~p_c(x)</math> and <math>~p_e(x)</math> are both dimensionless functions that will depend on the equations of state that are chosen for the core and envelope, respectively. By prescription, the pressure in the envelope must drop to zero at the surface of the bipolytropic configuration, hence, we should expect that <math>~p_e(1) = 1</math>. Furthermore, by prescription, the pressure in the core will drop to a value, <math>~P_{ic}</math>, at the interface, so we can write,

<math>~P_{ic} = P_0 [1 - p_c(q)] \, .</math>

In equilibrium — that is, when <math>~R_\mathrm{edge} = R_\mathrm{eq}</math> — we will demand that the pressure at the interface be the same, whether it is referenced in the core or in the envelope, that is, we will demand that <math>~P_{ic} = P_{ie} \, .</math> It will therefore prove to be strategically advantageous to rewrite the expression for the run of pressure through the core in terms of the pressure at the interface rather than in terms of the central pressure; specifically,

<math>~P_\mathrm{core}(x) = P_{ic} \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr] \, .</math>

Referencing these prescriptions for <math>~P_\mathrm{core}(x)</math> and <math>~P_\mathrm{env}(x)</math>, the two-part expression for the reservoir of thermodynamic energy is,

<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>

<math>~=</math>

<math> \frac{1}{({\gamma_c}-1)} \int_0^{r_i/R_\mathrm{norm}} 4\pi (r^*)^2 P^*_\mathrm{core} dr^* + \frac{1}{({\gamma_e}-1)} \int_{r_i/R_\mathrm{norm}}^\chi 4\pi (r^*)^2 P^*_\mathrm{env} dr^* </math>

 

<math>~=</math>

<math> \frac{4\pi \chi^3 }{({\gamma_c}-1)} \biggl[ \frac{P_{ic}}{P_\mathrm{norm}} \biggr] \int_0^q \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr] x^2 dx + \frac{4\pi \chi^3 }{({\gamma_e}-1)} \biggl[ \frac{P_{ie}}{P_\mathrm{norm}} \biggr] \int_q^1 \biggl[1 - p_e(x) \biggr] x^2 dx \, . </math>

As is implied by the subscripts on the adiabatic exponents that appear in the leading factor of each of the two terms, we are assuming that, as the bipolytropic system expands or contracts, the thermodynamic properties of the material in the envelope will vary as prescribed by an adiabat of index, <math>~\gamma_e</math>, while the thermodynamic properties of material in the core will vary as prescribed by a, generally different, adiabat of index, <math>~\gamma_c</math>. Therefore, as the radius of the bipolytropic configuration, <math>~R_\mathrm{edge}</math>, is varied, the density of each fluid element will vary and, in the core, the pressure of each fluid element will vary as <math>~P \propto \rho^{\gamma_c}</math> while, in the envelope, the pressure of each fluid element will vary as <math>~P \propto \rho^{\gamma_e}</math>. If we furthermore assume that the mass in the core and the mass in the envelope remain constant during a phase of contraction or expansion, the density of each fluid element will vary as <math>~R_\mathrm{edge}^{-3}</math>, whether the material is associated with the core or with the envelope. Therefore, using the subscript, "eq," to identify the value of thermodynamic quantities when the system is in an equilibrium state and, accordingly, <math>~R_\mathrm{edge} = R_\mathrm{eq}</math>, we can write,

<math>~\biggl[ \frac{P}{P_\mathrm{eq}} \biggr]_\mathrm{core}</math>

<math>~=</math>

<math>~\biggl( \frac{\rho}{\rho_\mathrm{eq}} \biggr)^{\gamma_c} = \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_c} \, ,</math>

and,

<math>~\biggl[ \frac{P}{P_\mathrm{eq}} \biggr]_\mathrm{env}</math>

<math>~=</math>

<math>~\biggl( \frac{\rho}{\rho_\mathrm{eq}} \biggr)^{\gamma_e} = \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_e} \, .</math>

In particular, for any <math>~R_\mathrm{edge}</math>, material associated with the core that lies at the interface will have a pressure given by the relation,

<math>~P_{ic}</math>

<math>~=</math>

<math> (P_{ic})_\mathrm{eq} \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_c} = (P_{ic})_\mathrm{eq} \biggl( \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \biggr)^{+3\gamma_c}\biggl( \frac{R_\mathrm{edge}}{R_\mathrm{norm}} \biggr)^{-3\gamma_c} = (P_{ic})_\mathrm{eq} \chi_\mathrm{eq}^{+3\gamma_c} \chi^{-3\gamma_c} \, ,</math>

while material associated with the envelope that lies at the interface will have a pressure given by the relation,

<math>~P_{ie}</math>

<math>~=</math>

<math> (P_{ie})_\mathrm{eq} \biggl( \frac{R_\mathrm{edge}}{R_\mathrm{eq}} \biggr)^{-3\gamma_e} = (P_{ie})_\mathrm{eq} \biggl( \frac{R_\mathrm{eq}}{R_\mathrm{norm}} \biggr)^{+3\gamma_e}\biggl( \frac{R_\mathrm{edge}}{R_\mathrm{norm}} \biggr)^{-3\gamma_e} = (P_{ie})_\mathrm{eq} \chi_\mathrm{eq}^{+3\gamma_e} \chi^{-3\gamma_e} \, .</math>

Hence,

<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>

<math>~=</math>

<math> \frac{4\pi }{({\gamma_c}-1)} \biggl[ \frac{P_{ic} \chi^{3\gamma_c}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_c} \int_0^q \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr] x^2 dx </math>

 

 

<math> + ~\frac{4\pi }{({\gamma_e}-1)} \biggl[ \frac{P_{ie} \chi^{3\gamma_e}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_e} \int_q^1 \biggl[1 - p_e(x) \biggr] x^2 dx \, . </math>



Now, let's see how this expression simplifies if <math>~P_{ie} = P_{ic}</math> and <math>~\gamma_e = \gamma_c</math> and, hence, the properties of the envelope are indistinguishable from the properties of the core. We note, first, that in this limit, <math>~P_\mathrm{core}(x)</math> and <math>~P_\mathrm{env}(x)</math> must be identical functions of <math>~x</math>, that is, it must be the case that <math>~p_e(x)</math> is related to <math>~p_c(x)</math> via the relation,

<math>~1 - p_e(x) </math>

<math>~=</math>

<math>~\frac{1 - p_c(x)}{1-p_c(q)} \, .</math>

We therefore obtain,

<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>

<math>~=</math>

<math> \frac{4\pi }{({\gamma_c}-1)} \biggl[ \frac{P_{ic} \chi^{3\gamma_c}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_c} \biggl\{ \int_0^q \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr] x^2 dx + \int_q^1 \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr] x^2 dx \biggr\} </math>

 

<math>~=</math>

<math> \frac{4\pi }{({\gamma_c}-1)} \biggl[ \frac{P_0 \chi^{3\gamma_c}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_c} \biggl\{ \int_0^1 \biggl[1 - p_c(x)\biggr] x^2 dx \biggr\} </math>

 

<math>~=</math>

<math> \frac{4\pi }{({\gamma_g}-1)} \cdot \chi^{3-3\gamma} \biggl\{ \biggl[ \biggl(\frac{3}{4\pi} \biggr) \frac{\rho_c}{\bar\rho} \biggr]_\mathrm{eq}^{\gamma} \int_0^{1} \biggl[ \frac{P(x)}{P_c} \biggr] x^2 dx \biggr\} \, , </math>

as desired.

Idealized Configuration

(For simplicity throughout this subsection, we will assume that the mass enclosed within the configuration's limiting radius, <math>~M_\mathrm{limit}</math>, equals the normalization mass, <math>~M_\mathrm{tot}</math>.) In the idealized situation of a configuration that has uniform density, <math>~\rho(x) = \rho_c</math> — and, hence, the density ratio <math>~\rho_c/\bar\rho = 1</math> — the mass interior to each radius is,

<math>~\frac{M_r(x)}{M_\mathrm{tot} } </math>

<math>~=</math>

<math>~ \int_0^{x} 3x^2 dx = x^3 \, ,</math>

and the normalized gravitational potential energy is,

<math>~\frac{W_\mathrm{grav}}{E_\mathrm{norm} }</math>

<math>~=</math>

<math> - \frac{3}{5} \chi^{-1} \int_0^{1} 5x \biggl\{ x^3\biggr\} dx = -\frac{3}{5} \chi^{-1} \, . </math>

If, in addition, the configuration is uniformly rotating with angular velocity, <math>~\dot\varphi = \dot\varphi_\mathrm{edge}</math>, and has uniform pressure, <math>~P_c</math>, evaluation of the ordered kinetic energy and thermodynamic energy integrals yields,

<math>~\frac{T_\mathrm{rot}}{E_\mathrm{norm} }</math>

<math>~=</math>

<math>~ 2\chi^{-2} \biggl( \frac{3^2\cdot 5^2}{2^6\pi} \biggr) \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \int_0^{1} w^3 dw \int_{0}^{\sqrt{1 - w^2}} d\zeta </math>

 

<math>~=</math>

<math>~ \chi^{-2} \biggl( \frac{3^2\cdot 5^2}{2^5\pi} \biggr) \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \int_0^1 w^3 (1-w^2)^{1/2} dw </math>

 

<math>~=</math>

<math>~ \chi^{-2} \biggl( \frac{3^2\cdot 5^2}{2^5\pi} \biggr)\biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \biggl[ -\frac{1}{15} (1-w^2)^{3/2} (3w^2 +2) \biggr]_0^1 </math>

 

<math>~=</math>

<math>~ \chi^{-2} \biggl( \frac{3\cdot 5}{2^4 \pi} \biggr) \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \, , </math>

<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~\frac{4\pi }{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma} \biggl\{ \biggl(\frac{3}{4\pi} \biggr)^{\gamma}\int_0^{1} 3x^2 dx \biggr\} = \frac{1}{({\gamma_g}-1)} \biggl(\frac{3}{4\pi} \biggr)^{\gamma-1} \chi^{3-3\gamma} \, ,</math>

<math>~\frac{\mathfrak{S}_I}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~-3 \ln \chi + \mathrm{constant} \, , </math>

where the various dimensionless integration variables are, <math>~x \equiv (r/R)</math>, <math>~\zeta \equiv (z/R)</math>, and <math>~w \equiv (\varpi/R)</math>.

Structural Form Factors

Keeping in mind the expressions that arise in the case of our just-defined, idealized configuration, in more realistic cases we generally will write each energy term as follows:

<math>~\frac{W_\mathrm{grav}}{E_\mathrm{norm}}</math>

<math>~=</math>

<math> - \frac{3}{5} \chi^{-1} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr)^2 \cdot \frac{\mathfrak{f}_W}{\mathfrak{f}^2_M} \, , </math>

<math>~\frac{T_\mathrm{rot}}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~ \biggl( \frac{3\cdot 5}{2^4 \pi} \biggr)\chi^{-2} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \biggl( \frac{\rho_c}{\bar\rho} \biggr)_\mathrm{eq} \cdot \frac{\mathfrak{f}_T}{\mathfrak{f}_M} \, , </math>

<math>~\frac{\mathfrak{S}_A}{E_\mathrm{norm}}</math>

<math>~=</math>

<math>~\frac{4\pi}{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma} \biggl[ \frac{3}{4\pi} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \biggr]_\mathrm{eq}^{\gamma} \cdot \frac{\mathfrak{f}_A}{\mathfrak{f}_M^{\gamma}} </math>

 

<math>~=</math>

<math>~\frac{4\pi}{3({\gamma_g}-1)} \cdot \chi^{3-3\gamma} \biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr)\chi^{3\gamma} \biggr]_\mathrm{eq} \cdot \mathfrak{f}_A \, ,</math>

where the dimensionless form factors, <math>~\mathfrak{f}_i</math>, which are assumed to be independent of the overall configuration size and will each usually of order unity, are,

<math>~\mathfrak{f}_M </math>

<math>~\equiv</math>

<math>~ \int_0^1 3\biggl[ \frac{\rho(x)}{\rho_c}\biggr] x^2 dx = \biggl( \frac{\bar\rho}{\rho_c} \biggr)_\mathrm{eq} \, ,</math>

<math>~\mathfrak{f}_W</math>

<math>~\equiv</math>

<math>~ 3\cdot 5 \int_0^1 \biggl\{ \int_0^x \biggl[ \frac{\rho(x)}{\rho_c}\biggr] x^2 dx \biggr\} \biggl[ \frac{\rho(x)}{\rho_c}\biggr] x dx\, ,</math>

<math>~\mathfrak{f}_T</math>

<math>~\equiv</math>

<math>~ \frac{15}{2} \int_0^1 \biggl[ \frac{\dot\varphi(w)}{\dot\varphi_\mathrm{edge}} \biggr]^2 w^3 dw \int_0^{\sqrt{1 - w^2}} \biggl[ \frac{\rho(w,\zeta)}{\rho_c} \biggr] d\zeta\, ,</math>

<math>~\mathfrak{f}_A</math>

<math>~\equiv</math>

<math>~ \int_0^1 3\biggl[ \frac{P(x)}{P_c}\biggr] x^2 dx \, .</math>

In each case, the "idealized" energy expression is retrieved if/when the relevant form factor, <math>~\mathfrak{f}_i</math>, is set to unity.

Some Detailed Examples

In an accompanying discussion, we derive detailed expressions for a selected subset of the above structural form factors and corresponding energy terms in the case of spherically symmetric configurations that obey an <math>~n=5</math> or an <math>~n=1</math> polytropic equation of state. The hope is that this will illustrate, in a clear and helpful manner, how the task of calculating form factors is to be carried out, in practice; and, in particular, to provide one nontrivial example for which analytic expressions are derivable. This should help debug numerical algorithms that are designed to calculate structural form factors for more general cases that cannot be derived analytically. The limits of integration will be specified in a general enough fashion that the resulting expressions can be applied, not only to the structures of isolated polytropes, but to pressure-truncated polytropes that are embedded in a hot, tenuous external medium and to the cores of bipolytropes.

Gathering it all Together

Gathering all of the terms together we find that, to within an additive constant, the expression for the normalized free energy is,

<math> \mathfrak{G}^* \equiv \frac{\mathfrak{G}}{E_\mathrm{norm}} = -3A\chi^{-1} -~ \frac{(1-\delta_{1\gamma_g})}{(1-\gamma_g)} B \chi^{3-3\gamma_g} -~ \delta_{1\gamma_g} 3\ln \chi +~ C \chi^{-2} +~ D\chi^3 \, , </math>

where,

<math>~A</math>

<math>~\equiv</math>

<math>\frac{1}{5} \cdot \biggl[ \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}} \biggr) \frac{1}{\mathfrak{f}_M} \biggr]^2 \cdot \mathfrak{f}_W \, ,</math>

<math>~B</math>

<math>~\equiv</math>

<math> \frac{4\pi}{3} \biggl[ \frac{3}{4\pi} \biggl( \frac{M_\mathrm{limit}}{M_\mathrm{tot}}\biggr) \frac{1}{\mathfrak{f}_M} \biggr]_\mathrm{eq}^{\gamma} \cdot \mathfrak{f}_A </math>

 

<math>~=</math>

<math> \frac{4\pi}{3} \biggl[ \biggl( \frac{P_c}{P_\mathrm{norm}} \biggr)\chi^{3\gamma} \biggr]_\mathrm{eq} \cdot \mathfrak{f}_A \, , </math>

<math>~C</math>

<math>~\equiv</math>

<math> \frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \cdot \frac{\mathfrak{f}_T}{\mathfrak{f}_M} \, , </math>

<math>~D</math>

<math>~\equiv</math>

<math> \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} \, . </math>

Once the pressure exerted by the external medium (<math>~P_e</math>), and the configuration's mass (<math>~M_\mathrm{tot}</math>), angular momentum (<math>~J</math>), and specific entropy (via <math>~K</math>) — or, in the isothermal case, sound speed (<math>~c_s</math>) — have been specified, the values of all of the coefficients are known and the above algebraic expression for <math>~\mathfrak{G}^*</math> describes how the free energy of the configuration will vary with the configuration's size (<math>~\chi</math>) for a given choice of <math>~\gamma_g</math>.

Visual Representation

Figure 1: Free Energy Surface

This segment of the free energy "surface" shows how the free energy varies as the size of the configuration and the applied external pressure are varied, while all other relevant physical attributes are held fixed.

The plotted function — derived from the above expression for <math>\mathfrak{G}^*</math>, with <math>~\gamma_\mathrm{g} = 1</math> and <math>~C=0</math> (see further discussion, below) — is, specifically,

<math> \mathfrak{G}^* = 3000\biggl[ - \frac{1}{\chi} - \ln\chi + \frac{\Pi}{3}\chi^3 + 0.9558 \biggr] \, . </math>

As shown, the size of the configuration <math>~(\chi)</math> increases to the right from <math>~1.2</math> to <math>~1.51</math>; the dimensionless external pressure <math>~(\Pi)</math> increases into the screen from <math>~0.103</math> to <math>~0.104</math>; and the dimensionless free energy, <math>~\mathfrak{G}^*</math>, increases upward.

Free Energy Surface

Energy Extrema

As is illustrated in Figure 1, the free energy surface generally will exhibit multiple local minima and local maxima, and may also possess one or more points of inflection. The locations along the energy surface where these special points arise identify equilibrium states, and the associated values of <math>~(R/R_0)_\mathrm{eq}</math> give the radii of the equilibrium configurations.

For a given choice of the set of physical parameters <math>~M</math>, <math>~K</math>, <math>~J</math>, <math>~P_e</math>, and <math>~\gamma_g</math>, extrema occur wherever,

<math> \frac{d\mathfrak{G^*}}{d\chi} = 0 \, . </math>

For the free energy function identified above,

<math> \frac{d\mathfrak{G^*}}{d\chi} = 3A\chi^{-2} -~ (1-\delta_{1\gamma_g})~3 B\chi^{2 -3\gamma_g} -~ \delta_{1\gamma_g} 3\chi^{-1} ~ -2C \chi^{-3} +~ 3D\chi^2 \, , </math>

so <math>\chi_\mathrm{eq} \equiv R_\mathrm{eq}/R_\mathrm{norm}</math> is obtained from the real root(s) of the equation,

<math> 2C \chi_\mathrm{eq}^{-2} + ~ (1-\delta_{1\gamma_g})~3 B\chi_\mathrm{eq}^{3 -3\gamma_g} +~ \delta_{1\gamma_g} 3 ~ -~3A\chi_\mathrm{eq}^{-1} -~ 3D\chi_\mathrm{eq}^3 = 0 \, . </math>


ASIDE: When we discuss the equilibrium of isothermal, rotating configurations that are immersed in an external medium, we will draw on the work of Weber (1976)Oscillation and Collapse of Interstellar Clouds — and the work of Tohline (1985)Star Formation: Phase Transition, not Jeans Instability — which, in turn draws upon Tohline (1981). In preparation for that discussion, we will go ahead and show how Tohline's (1985) statement of virial equilibrium — his equation (9) — is the same as the equation that defines free energy extrema that has been derived here; and we will show how Weber's (1976) "energy integral" — his equation (B3) — relates to our dimensionless free-energy function.



Tohline1985 Eq9.png

First, in order to match sign conventions, we need to multiply our "free energy extrema" equation through by minus one; second, we should set <math>~\delta_{1\gamma_g} = 1</math> because Tohline (1985) was only concerned with isothermal systems; then, because Tohline (1985) normalizes each energy term by

<math>~E^* \equiv \biggl( \frac{2^2 \cdot 3^2}{5^3} \biggr) \frac{G^2 M_\mathrm{tot}^5}{J^2} \, ,</math>

instead of by our <math>~E_\mathrm{norm}</math>, we need to multiply our equation through by the ratio,

<math>~\frac{E_\mathrm{norm}}{E^*} = \biggl( \frac{5^3}{2^4 \cdot 3\pi} \biggr) \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \, .</math>

With these three modifications, our "free energy extrema" relation becomes,

<math>~0</math>

<math>~=</math>

<math>\frac{3E_\mathrm{norm}}{E^*}\biggl[~A\chi_\mathrm{eq}^{-1} ~- \biggl( \frac{2C}{3}\biggr) \chi_\mathrm{eq}^{-2} ~ +~ D\chi_\mathrm{eq}^3 - ~ B_I \biggr] \, .</math>

Next, because Tohline (1985) considered only uniform-density configurations, all of the dimensionless filling factors can be set to unity in the definitions of the leading coefficients of all of our energy terms; but, following Tohline (1981), the leading coefficients of two of our energy terms should be modified to include a factor involving the configuration's eccentricity,

<math>e \equiv \biggl( 1 - \frac{Z_\mathrm{eq}^2}{R_\mathrm{eq}^2} \biggr)^{1/2} \, ,</math>

in order to account for rotational flattening. Properly adjusted, the four coefficients are,

<math>~A</math>

<math>~\equiv</math>

<math>\frac{1}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \, ,</math>

<math>~B_I</math>

<math>~\equiv</math>

<math> 1 \, , </math>

<math>~C</math>

<math>~\equiv</math>

<math> \frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] = \biggl( \frac{3^2}{5^2} \biggr) \frac{E_\mathrm{norm}}{E^*} \, , </math>

<math>~D</math>

<math>~\equiv</math>

<math> \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} (1-e^2)^{1/2} \, . </math>

Inserting these coefficient definitions, our "free energy extrema" relation becomes,

<math>~0</math>

<math>~=</math>

<math>\frac{3E_\mathrm{norm}}{E^*} \biggl[~\frac{1}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \chi_\mathrm{eq}^{-1} ~- \frac{E_\mathrm{norm}}{E^*} \biggl( \frac{2\cdot 3}{5^2} \biggr) \chi_\mathrm{eq}^{-2} ~ +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} (1-e^2)^{1/2} \chi_\mathrm{eq}^3 - ~ 1 \biggr] \, .</math>

Next we need to appreciate that Tohline (1985) adopted the dimensionless parameter, <math>~\beta \equiv T_\mathrm{rot}/|W_\mathrm{grav}|</math>, instead of the normalized radius, <math>~\chi</math>, as the order parameter that is varied when searching for extrema in the free-energy function. So, in our equation that defines "free energy extrema" we need to replace <math>~\chi_\mathrm{eq}</math> with <math>~\beta_\mathrm{eq}</math>, using the relation,

<math>~\beta \equiv \frac{T_\mathrm{rot}}{|W_\mathrm{grav}|}</math>

<math>~=</math>

<math>~\frac{C\chi^{-2}}{3A \chi^{-1}} = \biggl( \frac{3}{5} \biggr) \frac{E_\mathrm{norm}}{E^*} \biggl( \frac{\sin^{-1}e}{e} \biggr)^{-1} \chi^{-1}</math>

<math>\Rightarrow~~~~\chi_\mathrm{eq}^{-1} </math>

<math>~=</math>

<math> \biggl( \frac{5}{3} \biggr) \frac{E^*}{E_\mathrm{norm}} \biggl( \frac{\sin^{-1}e}{e} \biggr)\beta_\mathrm{eq} \, . </math>

Hence, our expression for the "free energy extrema" becomes,

<math>~0</math>

<math>~=</math>

<math> \biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \beta_\mathrm{eq} ~- 2\biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \beta_\mathrm{eq}^{2} ~ +~ \frac{4\pi P_e}{P_\mathrm{norm}} (1-e^2)^{1/2} \biggl[ \biggl( \frac{3^3}{5^3} \biggr) \biggl( \frac{E_\mathrm{norm}}{E^*} \biggr)^4 \biggl( \frac{\sin^{-1}e}{e} \biggr)^{-3}\biggr] \beta_\mathrm{eq}^{-3} - ~ \frac{3E_\mathrm{norm}}{E^*} </math>

 

<math>~=</math>

<math> 2 \biggl\{ \beta_\mathrm{eq} \biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \biggl( \frac{1}{2} - \beta_\mathrm{eq} \biggr) ~ + \frac{2\pi \cdot 3^3}{5^3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \biggl( \frac{E_\mathrm{norm}}{E^*} \biggr)^4 \biggl[ \beta_\mathrm{eq}^{-3}\biggl( \frac{\sin^{-1}e}{e} \biggr)^{-3} (1-e^2)^{1/2}\biggr] - ~ \biggl( \frac{3}{2} \biggr) \frac{5^3}{2^4 \cdot 3 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \biggr\} \, .</math>

Now,

<math>~\frac{2\pi \cdot 3^3}{5^3} \biggl( \frac{P_e}{P_\mathrm{norm}} \biggr) \biggl( \frac{E_\mathrm{norm}}{E^*} \biggr)^4</math>

<math>~=</math>

<math>~\frac{2\pi \cdot 3^3}{5^3} \biggl[ \frac{P_e}{(E^*)^4} \biggr] ( GM_\mathrm{tot}^2)^3</math>

 

<math>~=</math>

<math>~\frac{2\pi \cdot 3^3}{5^3} \biggl[\biggl( \frac{2^2 \cdot 3^2}{5^3} \biggr) \frac{G^2 M_\mathrm{tot}^5}{J^2} \biggr]^{-4} ( P_e G^3 M_\mathrm{tot}^6)</math>

 

<math>~=</math>

<math> ~\pi\biggl( \frac{5^{9}}{2^7 \cdot 3^5} \biggr) \frac{J^8 P_e }{G^5 M_\mathrm{tot}^{14}} = \frac{10 \pi}{3} \biggl( \frac{5^{2}}{2^2 \cdot 3} \biggr)^4 \frac{J^8 P_e }{G^5 M_\mathrm{tot}^{14}} \, , </math>

which is the definition of the coefficient "<math>~k</math>" that is provided as equation (7) of Tohline (1985). Hence, dropping the factor of two out front, our expression for "free energy extrema" becomes,

<math> \beta_\mathrm{eq} \biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \biggl( \frac{1}{2} - \beta_\mathrm{eq} \biggr) ~ + \frac{10 \pi}{3} \biggl( \frac{5^{2}}{2^2 \cdot 3} \biggr)^4 \frac{J^8 P_e }{G^5 M_\mathrm{tot}^{14}} \biggl[ \beta_\mathrm{eq}^{-3}\biggl( \frac{\sin^{-1}e}{e} \biggr)^{-3} (1-e^2)^{1/2}\biggr] - ~ \frac{3}{4\pi} \biggr( \frac{5^3}{2^3 \cdot 3} \biggr) \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] </math>

<math>~=</math>

<math>0 \, .</math>

Finally, realizing that the square of the sound speed is related to our <math>~c_\mathrm{norm}^2</math> via the relation [note that Tohline (1985) uses <math>~a^2</math> in place of <math>~c_s^2</math>],

<math>~c_s^2 = \biggl( \frac{3}{4\pi} \biggr) c_\mathrm{norm}^2 \, ,</math>

it is clear that this last form of our "free energy extrema" expression is identical to Tohline's (1985) virial equilibrium equation (9), which appears in print in a simpler but also more cryptic form as,

<math> \beta_\mathrm{eq} \biggl( \frac{\sin^{-1}e}{e} \biggr)^2 \biggl( \frac{1}{2} - \beta_\mathrm{eq} \biggr) + kV^* - F_s^* </math>

<math>~=</math>

<math>0 \, .</math>




AAAwaiting01.png

Plugging the same set of modified leading coefficients into our derived expression for the free energy becomes,

<math> \mathfrak{G}^* = ~ \frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr] \chi^{-2}

-~ 3 \ln \chi +~ \biggl( \frac{4\pi}{3} \biggr) \frac{P_e}{P_\mathrm{norm}} (1-e^2)^{1/2} \chi^3 

- \frac{3}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \chi^{-1}\, . </math>

Now, recognize that,

<math>~\chi</math>

<math>~=</math>

<math>~\alpha \biggl( \frac{R_0}{R_\mathrm{norm}} \biggr) = \biggl( \frac{2^2}{3\cdot 5} \biggr) \alpha \, ,</math>

<math>~(1 - e^2)^{1/2}</math>

<math>~=</math>

<math>~\frac{Z}{R} = \frac{\gamma}{\alpha} \, ,</math>

<math>~\frac{P_e}{P_\mathrm{norm}}</math>

<math>~=</math>

<math>~\frac{P_e}{P_0} \cdot \frac{P_0}{P_\mathrm{norm}} = \frac{3^4 \cdot 5^3}{2^{10} \pi} \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber} \, ,</math>

<math>~\frac{3\cdot 5}{2^4 \pi} \biggl[ \frac{J^2 c_\mathrm{norm}^2}{G^2 M_\mathrm{tot}^4} \biggr]</math>

<math>~=</math>

<math>~\frac{1}{3} \biggl( \frac{2}{5} J_\mathrm{Weber} \biggr)^2 \, ,</math>

where, for axisymmetric configurations (set <math>~\beta=\alpha</math> in Weber's (1976) equation 12),

<math>J_\mathrm{Weber} \equiv \alpha^2 \Omega = \biggl( \frac{R}{R_0} \biggr)^2 (\dot\varphi_c t_0)^2 \, .</math>

Hence, our expression for the free energy may be written as,

<math>~\mathfrak{G}^*</math>

<math>~=</math>

<math> \frac{1}{3} \biggl( \frac{2}{5} J_\mathrm{Weber}\biggr)^2 \biggl( \frac{3\cdot 5}{2^2} \biggr)^2 \alpha^{-2}

-~ 3 \ln \chi +~ \biggl( \frac{4\pi}{3} \biggr) \frac{3^4 \cdot 5^3}{2^{10} \pi} \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber} \biggl( \frac{2^2}{3\cdot 5} \biggr)^3 \alpha^2 \gamma

- \frac{3}{5} \biggl( \frac{\sin^{-1}e}{e} \biggr) \biggl( \frac{3\cdot 5}{2^2} \biggr) \alpha^{-1} </math>

 

<math>~=</math>

<math> \biggl( \frac{3}{2^2} \biggr) J^2_\mathrm{Weber} \alpha^{-2}

-~ \ln \chi^3 +~ \frac{1}{2^{2} } \alpha^2 \gamma \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber}  

- \frac{3^2}{2^2} \biggl( \frac{\sin^{-1}e}{e} \biggr) \alpha^{-1} \, . </math>

<math>\Rightarrow~~~~\frac{4}{3} \mathfrak{G}^*</math>

<math>~=</math>

<math> J^2_\mathrm{Weber} \alpha^{-2}

-~ \frac{4}{3} \ln \chi^3 +~ \frac{1}{3} \alpha^2 \gamma \biggl[ P_\mathrm{ext} \biggr]_\mathrm{Weber}  

- 3 \biggl( \frac{\sin^{-1}e}{e} \biggr) \alpha^{-1} \, . </math>

The right-hand-side of this expression exactly matches Weber's (1976) "energy integral" for oblate-spheroidal configurations — see his equation (B3) for the case, <math>~e > 0</math> — except that Weber's energy integral includes an additional pair of terms (<math>~{\dot\alpha}^2 + {\dot\gamma}^2/2</math>) to account for kinetic energy associated with the overall collapse or expansion of the configuration. [NOTE: The logarithmic term ultimately needs to be <math>~\ln \alpha^2\gamma</math> instead of <math>~\ln\chi^3</math> in order to reflect an oblate-spheroidal, rather than spherical, volume. This term also needs to be fixed in the above discussion of Tohline's work.]


Examples



Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


BiPolytrope

[Following a discussion that Tohline had with Kundan Kadam on 3 July 2013, we have decided to carry out a virial equilibrium and stability analysis of nonrotating bipolytropes.]

We will adopt the following approach:

  • Properties of the core <math>\cdots</math>
    • Uniform density, <math>\rho_c</math>;
    • Polytropic constant, <math>K_c</math>, and polytropic index, <math>n_c</math>;
    • Surface of the core at <math>r_i</math>;
  • Properties of the envelope <math>\cdots</math>
    • Uniform density, <math>\rho_e</math>;
    • Polytropic constant, <math>K_e</math>, and polytropic index, <math>n_e</math>;
    • Base of the core at <math>r_i</math> and surface at <math>R</math>.

Use the dimensionless radius,

<math>\xi \equiv \frac{r}{r_i}</math>.

Then, <math>\xi_i = 1</math> and <math>\xi_s \equiv R/r_i</math>.

Expressions for Mass

Inside the core, the expression for the mass interior to any radius, <math>0 \le \xi \le 1</math>, is,

<math>M_\xi = \frac{4\pi}{3} \rho_c r_i^3 \xi^3</math> .

The expression for the mass interior to any position within the envelope, <math>1 \le \xi \le \xi_s</math>, is,

<math>M_\xi = \frac{4\pi}{3} r_i^3 \biggl[\rho_c + \rho_e(\xi^3 - 1) \biggr]</math> .

Hence, in terms of a reference mass, <math>~M_0 \equiv 4\pi \rho_0 R_0^3/3</math>, the mass of the core, the mass of the envelope, and the total mass are, respectively,

<math>~M_\mathrm{core}</math>

<math>~=</math>

<math> \frac{4\pi}{3} \rho_c r_i^3 = M_0 \biggl[ \frac{\rho_c}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr] ~~~~~\Rightarrow~~~~~ \frac{\rho_c}{\rho_0} = \frac{M_\mathrm{core}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3} \, ; </math>

<math>~M_\mathrm{env}</math>

<math>~=</math>

<math> \frac{4\pi}{3} r_i^3 \biggl[\rho_e (\xi_s^3 - 1) \biggr] = M_0 (\xi_s^3 - 1) \biggl[ \frac{\rho_e}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr] ~~~~~\Rightarrow~~~~~ \frac{\rho_e}{\rho_0} = \frac{M_\mathrm{env}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3} (\xi_s^3 - 1)^{-1}\, ; </math>

<math>~M_\mathrm{tot}</math>

<math>~=</math>

<math> \frac{4\pi}{3} r_i^3 \biggl[\rho_c + \rho_e(\xi_s^3 - 1) \biggr] = M_0 \biggl( \frac{\rho_c}{\rho_0} \biggr) \biggl( \frac{r_i}{R_0}\biggr)^3 \biggl[ 1 + \frac{\rho_e}{\rho_c} (\xi_s^3 - 1) \biggr] \, . </math>

Following the work of Schönberg & Chandrasekhar (1942) — see our accompanying discussion — we will discuss bipolytropic equilibrium configurations in the context of a <math>~\nu - q</math> plane where,

<math>~\nu</math>

<math>~\equiv</math>

<math>~\frac{M_\mathrm{core}}{M_\mathrm{tot}} \, ,</math>

<math>~q</math>

<math>~\equiv</math>

<math>~\frac{r_i}{R} = \frac{1}{\xi_s} \, .</math>

With this in mind we can write,

<math>\frac{\rho_e}{\rho_c} = \frac{M_\mathrm{env}}{M_\mathrm{core}} (\xi_s^3 - 1)^{-1} = \frac{q^3 (1-\nu)}{\nu (1-q^3)} </math> ,

and,

<math>\nu \biggl(\frac{1-q^3}{q^3}\biggr) \biggl( \frac{\rho_e}{\rho_c} \biggr) = (1-\nu) ~~~~~\Rightarrow~~~~~ \nu = \biggl[ 1 + \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1-q^3}{q^3}\biggr) \biggr]^{-1} \, .</math>

Energy Expressions

The gravitational potential energy of the bipolytropic configuration is obtained by integrating over the following differential energy contribution,

<math>dW_\mathrm{grav} = - \biggl( \frac{GM_r}{r} \biggr) dm</math> .

Hence,

<math>~W_\mathrm{grav} = W_\mathrm{core} + W_\mathrm{env}</math>

<math> = - G \biggl\{ \int_0^{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_c dr + \int^R_{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_e dr \biggr\} </math>

 

<math> = - G \biggl\{ \int_0^1 \biggl( \frac{4\pi }{3} \rho_c r_i^3 \xi^3 \biggr) 4\pi r_i^2 \rho_c \xi d\xi + \int_1^{\xi_s} \frac{4\pi}{3} \rho_c r_i^3 \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] 4\pi r_i^2 \rho_e \xi d\xi \biggr\} </math>

 

<math> = - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \int_0^1 \xi^4 d\xi + \int_1^{\xi_s} \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] \biggl( \frac{\rho_e}{\rho_c} \biggr) \xi d\xi \biggr\} </math>

 

<math> = - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \frac{1}{5} + \biggl( \frac{\rho_e}{\rho_c} \biggr) \int_1^{\xi_s} \xi d\xi + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \int_1^{\xi_s} (\xi^3 - 1) \xi d\xi \biggr\} </math>

 

<math> = - \frac{3GM^2_\mathrm{tot}}{R} \biggl( \frac{M_\mathrm{core}}{M_\mathrm{tot}} \biggr)^2 \xi_s \biggl\{ \frac{1}{5} + \frac{1}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^2 - 1) + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \frac{1}{5}(\xi_s^5 - 1) - \frac{1}{2}(\xi_s^2-1) \biggr] \biggr\} </math>

I like the form of this expression. The leading term, which scales as <math>~R^{-1}</math>, encapsulates the behavior of the gravitational potential energy for a given choice of the internal structure, namely, a given choice of <math>~\xi_s</math>, <math>~\nu</math>, and density ratio <math>~(\rho_e/\rho_c)</math>. Actually, only two internal structural parameters need to be specified — <math>~\xi_s</math> and <math>~f_c</math>; from these two, the expressions shown above allow the determination of both <math>~(\rho_e/\rho_c)</math> and <math>~\nu</math>. Keeping in mind our desire to discuss the properties of bipolytropes in the context of the <math>~\nu - q</math> plane introduced by Schönberg & Chandrasekhar (1942), we will rewrite this expression for the gravitational potential energy as,

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~- \frac{3}{5} \biggl( \frac{GM_\mathrm{tot}^2}{R} \biggr) \frac{\nu^2}{q} \cdot f\biggl(q, \frac{\rho_e}{\rho_c} \biggr) \, ,</math>

where,

<math>~f\biggl(q, \frac{\rho_e}{\rho_c} \biggr)</math>

<math>~\equiv</math>

<math> 1 + \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1}{q^2} - 1 \biggr) + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \biggl( \frac{1}{q^5} - 1 \biggr) - \frac{5}{2}\biggl(\frac{1}{q^2} - 1 \biggr) \biggr] </math>

 

<math>~=</math>

<math> 1 + \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \frac{1}{q^5} \biggl[ (q^3- q^5 ) + \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl( \frac{2}{5} -q^3 + \frac{3}{5}q^5\biggr) \biggr] \, . </math>


See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation