User:Tohline/SSC/Synopsis StyleSheet

From VistrailsWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Spherically Symmetric Configurations Synopsis (Using Style Sheet)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Structure

Tabular Overview

Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion — adiabatic index, <math>~\gamma</math>

<math>~dV = 4\pi r^2 dr</math>

and

   <math>~dM_r = \rho dV ~~~\Rightarrow ~~~M_r = 4\pi \int_0^r \rho r^2 dr</math>

<math>~W_\mathrm{grav}</math>

<math>~=</math>

<math>~- \int_0^R \biggl(\frac{GM_r}{r}\biggr) dM_r ~~ \propto ~~ R^{-1}</math>

<math>~U_\mathrm{int}</math>

<math>~=</math>

<math>~\frac{1}{(\gamma -1)} \int_0^R 4\pi r^2 P dr ~~ \propto ~~ R^{3-3\gamma}</math>

Equilibrium Structure
   Detailed Force Balance    Free-Energy Identification of Equilibria
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of

Hydrostatic Balance

LSU Key.png

<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>

for the radial density distribution, <math>~\rho(r)</math>.

The Free-Energy is,

<math>~\mathfrak{G}</math>

<math>~=</math>

<math>~W_\mathrm{grav} + U_\mathrm{int} + P_eV</math>

 

<math>~=</math>

<math>~-a \biggl(\frac{R}{R_0}\biggr)^{-1} + b\biggl(\frac{R}{R_0}\biggr)^{3-3\gamma}+ c\biggl(\frac{R}{R_0}\biggr)^3 \, .</math>

Therefore, also,

<math>~R_0 ~\frac{\partial\mathfrak{G}}{\partial R}</math>

<math>~=</math>

<math>~a\biggl(\frac{R}{R_0}\biggr)^{-2} +(3-3\gamma)b\biggl(\frac{R}{R_0}\biggr)^{2-3\gamma} + 3c\biggl(\frac{R}{R_0}\biggr)^2</math>

 

<math>~=</math>

<math>~\frac{R_0}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math>

Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,

<math>~0</math>

<math>~=</math>

<math>~W_\mathrm{grav} + 3(\gamma-1)U_\mathrm{int} - 3P_eV\, .</math>

   Virial Equilibrium

Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:

<math>~0</math>

<math>~=</math>

<math>~-\int_0^R r\biggl(\frac{dP}{dr}\biggr)dV - \int_0^R r\biggl(\frac{GM_r \rho}{r^2}\biggr)dV</math>

 

<math>~=</math>

<math>~-\int_0^R 4\pi r^3 \biggl(\frac{dP}{dr}\biggr) dr - \int_0^R \biggl(\frac{GM_r}{r}\biggr)dM_r</math>

 

<math>~=</math>

<math>~-\int_0^R\biggl[ \frac{d}{dr}\biggl( 4\pi r^3P \biggr) - 12\pi r^2 P\biggr] dr + W_\mathrm{grav}</math>

 

<math>~=</math>

<math>~\int_0^R 3\biggl[ 4\pi r^2 P \biggr]dr - \int_0^R \biggl[ d(3PV)\biggr] + W_\mathrm{grav}</math>

 

<math>~=</math>

<math>~3(\gamma-1)U_\mathrm{int} + W_\mathrm{grav} - \biggl[ 3PV \biggr]_0^R \, .</math>

Pointers to Relevant Chapters

Background Material:

· Principal Governing Equations (PGEs) in most general form being considered throughout this H_Book
· PGEs in a form that is relevant to a study of the Structure, Stability, & Dynamics of spherically symmetric systems
· Supplemental relations — see, especially, barotropic equations of state


Detailed Force Balance:

· Derivation of the equation of Hydrostatic Balance, and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as Technique 1


Virial Equilibrium:

· Formal derivation of the multi-dimensional, 2nd-order tensor virial equations
· Scalar Virial Theorem, as appropriate for spherically symmetric configurations
· Generalization of scalar virial theorem to include the bounding effects of a hot, tenuous external medium

Stability

Isolated & Pressure-Truncated Configurations

Stability Analysis:   Applicable to Isolated & Pressure-Truncated Configurations
   Perturbation Theory    Free-Energy Analysis of Stability

Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the,

LAWE:   Linear Adiabatic Wave (or Radial Pulsation) Equation

<math>~0</math>

<math>~=</math>

<math>~ \frac{d}{dr}\biggl[ r^4 \gamma P ~\frac{dx}{dr} \biggr] +\biggl[ \omega^2 \rho r^4 + (3\gamma - 4) r^3 \frac{dP}{dr} \biggr] x </math>

[P00], Vol. II, §3.7.1, p. 174, Eq. (3.145)

to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>.

The second derivative of the free-energy function is,

<math>~R_0^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2}</math>

<math>~=</math>

<math>~ -2a\biggl(\frac{R}{R_0}\biggr)^{-3} + (3-3\gamma)(2-3\gamma)b \biggl(\frac{R}{R_0}\biggr)^{1-3\gamma} + 6c\biggl(\frac{R}{R_0}\biggr) </math>

 

<math>~=</math>

<math>~\biggl(\frac{R_0}{R} \biggr)^2\biggl[ 2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V \biggr] \, . </math>

Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,

<math>~3(\gamma-1)U_\mathrm{int}</math>

<math>~=</math>

<math>~3P_e V - W_\mathrm{grav} </math>

<math>~\Rightarrow~~~ R^2 \biggl[\frac{\partial^2\mathfrak{G}}{\partial R^2}\biggr]_\mathrm{equil}</math>

<math>~=</math>

<math>~2W_\mathrm{grav} - (2-3\gamma)\biggl[3P_e V - W_\mathrm{grav} \biggr] + 6P_e V </math>

 

<math>~=</math>

<math>~(4-3\gamma)W_\mathrm{grav} + 3^2\gamma P_e V \, . </math>

Note the similarity with .



Alternatively, recalling that,

<math>~3(\gamma - 1)U_\mathrm{int}</math>

<math>~=</math>

<math>~2S_\mathrm{therm} \, , </math>

the conditions for virial equilibrium and stability, may be written respectively as,

<math>~3P_e V</math>

<math>~=</math>

<math>~ 2S_\mathrm{therm}+ W_\mathrm{grav} </math>

<math>~\Rightarrow~~~ R^2 \biggl[\frac{\partial^2\mathfrak{G}}{\partial R^2}\biggr]_\mathrm{equil}</math>

<math>~=</math>

<math>~ 2W_\mathrm{grav} - 2(2-3\gamma)S_\mathrm{therm} + 2 \biggl[ 2S_\mathrm{therm}+ W_\mathrm{grav} \biggr] </math>

 

<math>~=</math>

<math>~ 4W_\mathrm{grav} + 6\gamma S_\mathrm{therm} \, . </math>


   Variational Principle

Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the,

Governing Variational Relation

<math>~0</math>

<math>~=</math>

<math>~ \int_0^R 4\pi r^4 \gamma P \biggl(\frac{dx}{dr}\biggr)^2 dr - \int_0^R 4\pi (3\gamma - 4) r^3 x^2 \biggl( \frac{dP}{dr} \biggr) dr </math>

 

 

<math>~ - 4\pi \biggr[r^4 \gamma Px \biggl(\frac{dx}{dr}\biggr) \biggr]_0^R - \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . </math>

 

<math>~=</math>

<math>~ \int_0^R x^2 \biggl(\frac{d\ln x}{d\ln r}\biggr)^2 \gamma 4\pi r^2P dr - \int_0^R (3\gamma - 4)x^2 \biggl( - \frac{GM_r}{r} \biggr) 4\pi \rho r^2 dr </math>

 

 

<math>~ + \biggr[\gamma 4\pi r^3 Px^2 \biggl(-\frac{d\ln x}{d\ln r}\biggr) \biggr]_0^R - \int_0^R 4\pi \omega^2 \rho r^4 x^2 dr \, . </math>

Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,

<math>~\omega^2</math>

<math>~=</math>

<math>~ \frac{\gamma (\gamma -1) \int_0^R x^2 \bigl(\frac{d\ln x}{d\ln r}\bigr)^2 dU_\mathrm{int} - \int_0^R (3\gamma - 4)x^2 dW_\mathrm{grav} + 3^2 \gamma x^2 P_eV}{ \int_0^R x^2 r^2 dM_r} </math>

   Approximation:   Homologous Expansion/Contraction

If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,

<math>~\omega^2 \int_0^R r^2 dM_r</math>

<math>~\leq</math>

<math>~ (4- 3\gamma) W_\mathrm{grav}+ 3^2 \gamma P_eV \, . </math>

Bipolytropes

Stability Analysis:   Applicable to Bipolytropic Configurations
   Variational Principle    Free-Energy Analysis of Stability

Governing Variational Relation

<math>~\biggl( \frac{2\pi}{3}\biggr)\sigma_c^2 \int_0^{R^*} (x r^*)^2 dM_r^* </math>

<math>~=</math>

<math>~ \gamma_c (\gamma_c-1) \int_0^{r^*_\mathrm{core}} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} - (3\gamma_c - 4) \int_0^{r^*_\mathrm{core}} x^2 dW^*_\mathrm{grav} </math>

 

 

<math>~ + ~\gamma_e (\gamma_e-1) \int_{r^*_\mathrm{core}}^{R^*} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} - (3\gamma_e - 4) \int_{r^*_\mathrm{core}}^{R^*} x^2 dW^*_\mathrm{grav} </math>

 

 

<math>~ + ~3^2(\gamma_c - \gamma_e) x_i^2 P_i^* V_\mathrm{core}^* \, . </math>

As we have detailed in an accompanying discussion, the first derivative of the relevant free-energy expression is,

<math>~R ~\frac{\partial \mathfrak{G}}{\partial R}</math>

<math>~=</math>

<math>~ 2S_\mathrm{tot} + W_\mathrm{tot} \, , </math>

where,

<math>~S_\mathrm{tot} \equiv S_\mathrm{core} + S_\mathrm{env}</math>

    and    

<math>~W_\mathrm{tot} \equiv W_\mathrm{core} + W_\mathrm{env} \, ;</math>

and the second derivative of that free-energy function is,

<math>~R^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2}</math>

<math>~=</math>

<math>~2\biggl[ W_\mathrm{tot} + (3\gamma_c - 2) S_\mathrm{core} + (3\gamma_e-2)S_\mathrm{env} \biggr] \, . </math>



This stability criterion may be rewritten as,

<math>~\biggl[ R^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2} \biggr]_\mathrm{equil}</math>

<math>~=</math>

<math>~ 2[(3\gamma_c -4) S_\mathrm{core} + (3\gamma_e -4) S_\mathrm{env} ] \, . </math>

Hence, in bipolytropes, the marginally unstable equilibrium configuration (second derivative of free-energy set to zero) will be identified by the model that exhibits the ratio,

<math>~\frac{S_\mathrm{core}}{S_\mathrm{env}}</math>

<math>~=</math>

<math>~ \frac{(3\gamma_e - 4)}{(4 - 3\gamma_c)} \, . </math>

See the accompanying discussion.


If — based for example on — we make the reasonable assumption that, in equilibrium, the statements,

<math>~2S_\mathrm{core} = 3P_i V_\mathrm{core} - W_\mathrm{core}</math>

    and    

<math>~2S_\mathrm{env} = - 3P_i V_\mathrm{core} - W_\mathrm{env} \, ,</math>

hold separately, then we satisfy the virial equilibrium condition, namely,

<math>~0</math>

<math>~=</math>

<math>~2S_\mathrm{tot} + W_\mathrm{tot} \, ,</math>

and the second derivative of the relevant free-energy function can be rewritten as,

<math>~\biggl[ R^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2} \biggr]_\mathrm{equil}</math>

<math>~=</math>

<math>~ 2(W_\mathrm{core} + W_\mathrm{env}) + (3\gamma_c - 2) (3P_i V_\mathrm{core} - W_\mathrm{core}) </math>

 

 

<math>~ + (3\gamma_e-2)(-3P_i V_\mathrm{core} - W_\mathrm{env}) </math>

 

<math>~=</math>

<math>~ 3^2 P_i V_\mathrm{core}(\gamma_c - \gamma_e) + (4-3\gamma_c ) W_\mathrm{core} + (4-3\gamma_e)W_\mathrm{env} \, . </math>

Note the similarity with — temporarily, see this discussion.

   Approximation:   Homologous Expansion/Contraction

If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,

<math>~\biggl( \frac{2\pi}{3}\biggr)\sigma_c^2 \int_0^R r^2 dM_r</math>

<math>~\leq</math>

<math>~ (4- 3\gamma_c) W_\mathrm{core}+ (4- 3\gamma_e) W_\mathrm{env}+ 3^2 (\gamma_c - \gamma_e) P_i V_\mathrm{core} \, . </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation