Difference between revisions of "User:Tohline/SSC/Structure/WhiteDwarfs"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Highlights from Discussion by Shapiro & Teukolsky (1983): Finished showing parallel derivation of M_Ch by ST83)
(→‎Highlights from Discussion by Shapiro & Teukolsky (1983): Rearrange presentation of 3 equations from ST83)
Line 209: Line 209:
As is shown by the following boxed-in image, this expression matches equation (3.3.11) from [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>], except for the sign of the exponent on <math>~\xi_1</math>, which is demonstratively correct in our expression.
As is shown by the following boxed-in image, this expression matches equation (3.3.11) from [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>], except for the sign of the exponent on <math>~\xi_1</math>, which is demonstratively correct in our expression.


<table border="1" cellpadding="5" align="center">
<!-- <table border="1" cellpadding="5" align="center">
<tr>
<tr>
   <td align="center">
   <td align="center">
Line 221: Line 221:
</tr>
</tr>
</table>
</table>
-->


Given that (see equation 3.3.12 of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>]) in the relativistic limit, <math>~\Gamma = \gamma_g = 4/3</math> &#8212; that is, <math>~n=3</math> &#8212; and acknowledging as [[#m3|we have above]] that, for isolated <math>~n = 3</math> polytropes,  
<div align="center">
<table border="1" cellpadding="5" width="80%">
<tr><td align="center">
Equation extracted<sup>&dagger;</sup> from &sect;3.3 (p. 63) and &sect;2.3 (p. 27) of [http://adsabs.harvard.edu/abs/1983bhwd.book.....S Shapiro &amp; Teukolsky (1983)]<p></p>
"''Black Holes, White Dwarfs, and Neutron Stars: &nbsp; The Physics of Compact Objects''"<p></p>
(New York:  John Wiley &amp; Sons)
</td></tr>
<tr>
  <td align="center">
[[File:ST83Eq3_3_11.png|600px|Equation 3.3.11 from ST83]]
<!-- [[Image:AAAwaiting01.png|400px|center|Norman &amp; Wilson (1978)]] -->
  </td>
</tr>
<tr>
  <td align="center">
[[File:ST83Eq3_3_12.png|600px|Equation 3.3.12 from ST83]]
<!-- [[Image:AAAwaiting01.png|400px|center|Norman &amp; Wilson (1978)]] -->
  </td>
</tr>
<tr>
  <td align="center">
[[File:ST83Eq2_3_23.png|600px|Equation 2.3.23 from ST83]]
<!-- [[Image:AAAwaiting01.png|400px|center|Norman &amp; Wilson (1978)]] -->
  </td>
</tr>
<tr><td align="left"><sup>&dagger;</sup>Equations displayed here, as individual digital images, exactly as they appear in the original publication.</td></tr>
</table>
</div>
 
 
Given that (see equation 3.3.12 of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>], reprinted above) in the relativistic limit, <math>~\Gamma = \gamma_g = 4/3</math> &#8212; that is, <math>~n=3</math> &#8212; and acknowledging as [[#m3|we have above]] that, for isolated <math>~n = 3</math> polytropes,  
<div align="center">
<div align="center">
<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>,
<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>,
</div>
</div>


<table border="1" cellpadding="5" align="center">
<!-- <table border="1" cellpadding="5" align="center">
<tr>
<tr>
   <td align="center">
   <td align="center">
Line 239: Line 270:
</tr>
</tr>
</table>
</table>
-->


this polytropic expression for the mass becomes,
this polytropic expression for the mass becomes,
Line 259: Line 291:
</div>
</div>


Separately, [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] show that the effective polytropic constant for a relativistic electron gas is (see their equation 2.3.23),
Separately, [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] show that the effective polytropic constant for a relativistic electron gas is (see their equation 2.3.23, reprinted above),


<div align="center">
<div align="center">
Line 281: Line 313:
</div>
</div>


<table border="1" cellpadding="5" align="center">
<!-- <table border="1" cellpadding="5" align="center">
<tr>
<tr>
   <td align="center">
   <td align="center">
Line 293: Line 325:
</tr>
</tr>
</table>
</table>
-->


Together, then, the [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] analysis gives,
Together, then, the [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] analysis gives,

Revision as of 21:53, 21 November 2016

White Dwarfs

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Mass-Radius Relationships

The following summaries are drawn from Appendix A of Even & Tohline (2009).

Chandrasekhar mass

Chandrasekhar (1935) was the first to construct models of spherically symmetric stars using the barotropic equation of state appropriate for a degenerate electron gas, namely,

LSU Key.png

<math>~P_\mathrm{deg} = A_\mathrm{F} F(\chi) </math>

where:  <math>F(\chi) \equiv \chi(2\chi^2 - 3)(\chi^2 + 1)^{1/2} + 3\sinh^{-1}\chi</math>

and:   

<math>\chi \equiv (\rho/B_\mathrm{F})^{1/3}</math>

In so doing, he demonstrated that the maximum mass of an isolated, nonrotating white dwarf is <math>M_\mathrm{Ch} = 1.44 (\mu_e/2)M_\odot</math>, where <math>~\mu_e</math> is the number of nucleons per electron and, hence, depends on the chemical composition of the white dwarf. A concise derivation of <math>M_\mathrm{Ch}</math> (although, at the time, it was referred to as <math>M_3</math>) is presented in Chapter XI of Chandrasekhar (1967), where we also find the expressions for the characteristic Fermi pressure, <math>~A_\mathrm{F}</math>, and the characteristic Fermi density, <math>~B_\mathrm{F}</math>. The derived analytic expression for the limiting mass is,

<math>\mu_e^2 M_\mathrm{Ch} = 4\pi m_3 \biggl( \frac{2A_\mathrm{F}}{\pi G} \biggr)^{3/2} \frac{\mu_e^2}{B_\mathrm{F}^2} = 1.14205\times 10^{34} ~\mathrm{g}</math>,

where the coefficient,

<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>,

represents a structural property of <math>n = 3</math> polytropes (<math>\gamma = 4/3</math> gasses) whose numerical value can be found in Chapter IV, Table 4 of Chandrasekhar (1967). We note as well that Chandrasekhar (1967) identified a characteristic radius, <math>\ell_1</math>, for white dwarfs given by the expression,

<math> \ell_1 \mu_e \equiv \biggl( \frac{2A_\mathrm{F}}{\pi G} \biggr)^{1/2} \frac{\mu_e}{B_\mathrm{F}} = 7.71395\times 10^8~\mathrm{cm} . </math>

The Nauenberg Mass-Radius Relationship

Nauenberg (1972) derived an analytic approximation for the mass-radius relationship exhibited by isolated, spherical white dwarfs that obey the zero-temperature white-dwarf equation of state. Specifically, he offered an expression of the form,

<math> R = R_0 \biggl[ \frac{(1 - n^{4/3})^{1/2}}{n^{1/3}} \biggr] , </math>

where,

<math> n </math>

<math> \equiv </math>

<math> \frac{M}{(\bar{\mu} m_u) N_0} , </math>

<math> N_0 </math>

<math> \equiv </math>

<math> \frac{(3\pi^2\zeta)^{1/2}}{\nu^{3/2}} \biggl[ \frac{hc}{2\pi G(\bar\mu m_u)^2} \biggr]^{3/2} = \frac{\mu_e^2 m_p^2}{(\bar\mu m_u)^3} \biggl[ \frac{4\pi \zeta}{m_3^2 \nu^3} \biggr]^{1/2} M_\mathrm{Ch} , </math>

<math> R_0 </math>

<math> \equiv </math>

<math> (3\pi^2 \zeta)^{1/3} \biggl[ \frac{h}{2\pi m_e c} \biggr] N_0^{1/3} = \frac{\mu_e m_p}{\bar\mu m_u} \biggl[ \frac{4\pi \zeta}{\nu} \biggr]^{1/2} \ell_1 , </math>

<math>~m_u</math> is the atomic mass unit, <math>~\bar{\mu}</math> is the mean molecular weight of the gas, and <math>\zeta</math> and <math>\nu</math> are two adjustable parameters in Nauenberg's analytic approximation, both of which are expected to be of order unity. By assuming that the average particle mass denoted by Chandrasekhar (1967) as <math>(\mu_e m_p)</math> is identical to the average particle mass specified by Nauenberg (1972) as <math>(\bar\mu m_u)</math> and, following Nauenberg's lead, by setting <math>\nu = 1</math> and,

<math>\zeta = \frac{m_3^2}{4\pi} = 0.324142</math>,

in the above expression for <math>N_0</math>, we see that,

<math> (\bar\mu m_u)N_0 = M_\mathrm{Ch} . </math>

Hence, the denominator in the above expression for <math>n</math> becomes the Chandrasekhar mass. Furthermore, the above expressions for <math>R_0</math> and <math>R</math> become, respectively,

<math> \mu_e R_0 = m_3(\ell_1 \mu_e) = 1.55686\times 10^9~\mathrm{cm} , </math>

and,

<math> R = R_0 \biggl\{ \frac{[1 - (M/M_\mathrm{Ch})^{4/3} ]^{1/2}}{(M/M_\mathrm{Ch})^{1/3}} \biggr\} . </math>

Finally, by adopting appropriate values of <math>M_\odot</math> and <math>R_\odot</math>, we obtain essentially the identical approximate, analytic mass-radius relationship for zero-temperature white dwarfs presented in Eqs. (27) and (28) of Nauenberg (1972):

<math> \frac{R}{R_\odot} = \frac{0.0224}{\mu_e} \biggl\{ \frac{[1 - (M/M_\mathrm{Ch})^{4/3} ]^{1/2}}{(M/M_\mathrm{Ch})^{1/3}} \biggr\} , </math>

where,

<math> \frac{M_\mathrm{Ch}}{M_\odot} = \frac{5.742}{\mu_e^2} . </math>

Eggleton Mass-Radius Relationship

Verbunt & Rappaport (1988) introduced the following approximate, analytic expression for the mass-radius relationship of a "completely degenerate <math>\ldots</math> star composed of pure helium" (i.e., <math>\mu_e = 2</math>), attributing the expression's origin to Eggleton (private communication):

<math> \frac{R}{R_\odot} = 0.0114 \biggl[ \biggl(\frac{M}{M_\mathrm{Ch}}\biggr)^{-2/3} - \biggl(\frac{M}{M_\mathrm{Ch}}\biggr)^{2/3} \biggr]^{1/2} \biggl[ 1 + 3.5 \biggl(\frac{M}{M_p}\biggr)^{-2/3} + \biggl(\frac{M}{M_p}\biggr)^{-1} \biggr]^{-2/3} , </math>

where <math>M_p</math> is a constant whose numerical value is <math>0.00057 M_\odot</math>. This "Eggleton" mass-radius relationship has been used widely by researchers when modeling the evolution of semi-detached binary star systems in which the donor is a zero-temperature white dwarf. Since the Nauenberg (1972) mass-radius relationship discussed above is retrieved from this last expression in the limit <math>M/M_p \gg 1</math>, it seems clear that Eggleton's contribution was the insertion of the term in square brackets involving the ratio <math>M/M_p</math> which, as Marsh, Nelemans & Steeghs (2004) phrase it, "allows for the change to be a constant density configuration at low masses (Zapolsky & Salpeter 1969)."

Highlights from Discussion by Shapiro & Teukolsky (1983)

Here we interleave our own derivations and discussions with the presentation found in [ST83].

In our accompanying discussion, we have shown that the equilibrium radius of an isolated polytrope is given, quite generally, by the expression,

<math>~R_\mathrm{eq} </math>

<math>~=</math>

<math>~\biggl[\biggl(\frac{G}{K_n}\biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} \biggl[ \frac{4\pi}{(n+1)^n} \biggr]^{1/(n-3)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1}^{(1-n)/(n-3)} \xi_1 \, . </math>

Inverting this provides the following expression for the total mass in terms of the equilibrium radius:

<math>~ M_\mathrm{tot}^{1-n} </math>

<math>~=</math>

<math>~R_\mathrm{eq}^{3-n}\biggl(\frac{G}{K_n}\biggr)^n \biggl[ \frac{4\pi}{(n+1)^n} \biggr] \biggl[(-\theta^') \xi^2\biggr]_{\xi_1}^{1-n} \xi_1^{n-3} </math>

<math>~\Rightarrow~~~ M_\mathrm{tot}</math>

<math>~=</math>

<math>~R_\mathrm{eq}^{(3-n)/(1-n)}\biggl[\frac{G}{(n+1)K_n}\biggr]^{n/(1-n)} ( 4\pi )^{1/(1-n)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1} \xi_1^{(n-3)/(1-n)} </math>

 

<math>~=</math>

<math>~4\pi R_\mathrm{eq}^{(3-n)/(1-n)}\biggl[\frac{(n+1)K_n}{4\pi G}\biggr]^{n/(n-1)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1} \xi_1^{(n-3)/(1-n)} </math>

As is shown by the following boxed-in image, this expression matches equation (3.3.11) from [ST83], except for the sign of the exponent on <math>~\xi_1</math>, which is demonstratively correct in our expression.


Equation extracted from §3.3 (p. 63) and §2.3 (p. 27) of Shapiro & Teukolsky (1983)

"Black Holes, White Dwarfs, and Neutron Stars:   The Physics of Compact Objects"

(New York: John Wiley & Sons)

Equation 3.3.11 from ST83

Equation 3.3.12 from ST83

Equation 2.3.23 from ST83

Equations displayed here, as individual digital images, exactly as they appear in the original publication.


Given that (see equation 3.3.12 of [ST83], reprinted above) in the relativistic limit, <math>~\Gamma = \gamma_g = 4/3</math> — that is, <math>~n=3</math> — and acknowledging as we have above that, for isolated <math>~n = 3</math> polytropes,

<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>,


this polytropic expression for the mass becomes,

<math>~ M_\mathrm{tot}</math>

<math>~=</math>

<math>~4\pi m_3 \biggl[\frac{ K_3 }{\pi G}\biggr]^{3/2} \, . </math>

Separately, [ST83] show that the effective polytropic constant for a relativistic electron gas is (see their equation 2.3.23, reprinted above),

<math>~K_3</math>

<math>~=</math>

<math>~ \biggl( \frac{3\pi^2}{2^6}\biggr)^{1/ 3} \biggl[ \frac{ \hbar^3 c^3 }{ m_u^4 \mu_e^4 } \biggr]^{ 1 / 3} = \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 3} \, . </math>


Together, then, the [ST83] analysis gives,

<math>~ M_\mathrm{tot}</math>

<math>~=</math>

<math>~4\pi m_3 \biggl[\frac{ 1 }{\pi G}\biggr]^{3/2} \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 2} \, . </math>

Given that the definitions of the characteristic Fermi pressure, <math>~A_\mathrm{F}</math>, and the characteristic Fermi density, <math>~B_\mathrm{F}</math>, are,

<math>A_\mathrm{F} \equiv \frac{\pi m_e^4 c^5}{3h^3} </math>

<math>\frac{B_\mathrm{F}}{\mu_e} \equiv \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \, ,</math>

we have,

<math>~ M_\mathrm{tot}</math>

<math>~=</math>

<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 2} \biggl[ \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \biggr]^2 \biggl[\frac{3h^3}{2\pi m_e^4 c^5} \biggr]^{3 / 2} </math>

 

<math>~=</math>

<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl\{ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \cdot \frac{2^{12} \pi^4 m_p^4}{3^4} \biggl( \frac{m_e c}{h} \biggr)^{12} \cdot \frac{3^3h^9}{2^3\pi^3 m_e^{12} c^{15}} \biggr\}^{1 / 2} </math>

 

<math>~=</math>

<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl[ \frac{ m_p }{m_u \mu_e } \biggr]^{2} </math>

<math>~\Rightarrow ~~~ \mu_e^2 M_\mathrm{tot}</math>

<math>~=</math>

<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl[ \frac{ m_p }{m_u } \biggr]^{2} \, , </math>

which matches the expression presented above for the Chandrasekhar mass if we set <math>~m_u = m_p</math>.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation