User:Tohline/SSC/Structure/BiPolytropes/Analytic1.5 3

From VistrailsWiki
< User:Tohline‎ | SSC/Structure/BiPolytropes
Revision as of 02:15, 28 May 2015 by Tohline (talk | contribs) (→‎Milne's (1930) Presentation: Finished demonstrating that Milne's radial scale factor, a_3, is the same as the one we have derived)
Jump to navigation Jump to search

BiPolytrope with <math>n_c = \tfrac{3}{2}</math> and <math>n_e=3</math>

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Here we lay out the procedure for constructing a bipolytrope in which the core has an <math>~n_c=\tfrac{3}{2}</math> polytropic index and the envelope has an <math>~n_e=3</math> polytropic index. We will build our discussion around the work of E. A. Milne (1930, MNRAS, 91, 4). While this system cannot be described by closed-form, analytic expressions, it is of particular interest because — as far as we have been able to determine — its examination by Milne represents the first "composite polytrope" to be discussed in the astrophysics literature. In deriving the properties of this model, we will follow the general solution steps for constructing a bipolytrope that are outlined in a separate chapter of this H_Book. That group of general solution steps was drawn largely from chapter IV, §28 of Chandrasekhar's book titled, "An Introduction to the Study of Stellar Structure" [C67], and at the end of that chapter (specifically, p. 182), Chandrasekhar acknowledges that Milne's "method is largely used in § 28." It seems fitting, therefore, that we highlight the features of the specific bipolytropic configuration that E. A. Milne (1930) chose to build.

Our Derivation

Steps 2 & 3

Throughout the core, the properties of this bipolytrope can be expressed in terms of the Lane-Emden function, <math>~\theta(\xi)</math>, which derives from a solution of the 2nd-order ODE,

<math> \frac{1}{\xi^2} \frac{d}{d\xi} \biggl[ \xi^2 \frac{d\theta}{d\xi}\biggr] = - \theta^{3/2} \, , </math>

subject to the boundary conditions,

<math>~\theta = 1</math>       and       <math>~\frac{d\theta}{d\xi} = 0</math>       at       <math>~\xi = 0</math>.

The first zero of the function <math>~\theta(\xi)</math> and, hence, the surface of the corresponding isolated <math>~n=\tfrac{3}{2}</math> polytrope is located at <math>~\xi_s = 3.65375</math> (see Table 4 in chapter IV on p. 96 of [C67]). Hence, the interface between the core and the envelope can be positioned anywhere within the range, <math>~0 < \xi_i < \xi_s = 3.65375</math>.

Step 4: Throughout the core <math>~(0 \le \xi \le \xi_i)</math>

Specify: <math>~K_c</math> and <math>~\rho_0 ~\Rightarrow</math>

 

<math>~\rho</math>

<math>~=</math>

<math>~\rho_0 \theta^{n_c}</math>

<math>~=</math>

<math>~\rho_0 \theta^{3/2}</math>

<math>~P</math>

<math>~=</math>

<math>~K_c \rho_0^{1+1/n_c} \theta^{n_c + 1}</math>

<math>~=</math>

<math>~K_c \rho_0^{5/3} \theta^{5/2}</math>

<math>~r</math>

<math>~=</math>

<math>~\biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{1/2} \rho_0^{(1-n_c)/(2n_c)} \xi</math>

<math>~=</math>

<math>~\biggl[ \frac{5K_c}{8\pi G} \biggr]^{1/2} \rho_0^{-1/6} \xi</math>

<math>~M_r</math>

<math>~=</math>

<math>~4\pi \biggl[ \frac{(n_c + 1)K_c}{4\pi G} \biggr]^{3/2} \rho_0^{(3-n_c)/(2n_c)} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>

<math>~=</math>

<math>~\biggl[ \frac{5^3K_c^3}{2^5 \pi G^3} \biggr]^{1/2} \rho_0^{1/2} \biggl(-\xi^2 \frac{d\theta}{d\xi} \biggr)</math>

Step 5: Interface Conditions

 

Setting <math>~n_c=\tfrac{3}{2}</math>, <math>~n_e=3</math>, and <math>~\phi_i = 1 ~~~~\Rightarrow</math>

<math>\frac{\rho_e}{\rho_0}</math>

<math>~=</math>

<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{n_c}_i \phi_i^{-n_e}</math>

<math>~=</math>

<math>\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i </math>

<math>\biggl( \frac{K_e}{K_c} \biggr) </math>

<math>~=</math>

<math>\rho_0^{1/n_c - 1/n_e}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-(1+1/n_e)} \theta^{1 - n_c/n_e}_i</math>

<math>~=</math>

<math>\rho_0^{1/3}\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-4/3} \theta^{1/2}_i</math>

<math>\frac{\eta_i}{\xi_i}</math>

<math>~=</math>

<math>\biggl[ \frac{n_c + 1}{n_e+1} \biggr]^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{(n_c-1)/2} \phi_i^{(1-n_e)/2}</math>

<math>~=</math>

<math>\biggl(\frac{5}{8}\biggr)^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr) \theta_i^{1/4}</math>

<math>\biggl( \frac{d\phi}{d\eta} \biggr)_i</math>

<math>~=</math>

<math>\biggl[ \frac{n_c + 1}{n_e + 1} \biggr]^{1/2} \theta_i^{- (n_c + 1)/2} \phi_i^{(n_e+1)/2} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>

<math>~=</math>

<math>\biggl(\frac{5}{8}\biggr)^{1/2} \theta_i^{- 5/4} \biggl( \frac{d\theta}{d\xi} \biggr)_i</math>

Step 8: Throughout the envelope <math>~(\eta_i \le \eta \le \eta_s)</math>

 

Knowing: <math>~K_e/K_c</math> and <math>~\rho_e/\rho_0</math> from Step 5   <math>\Rightarrow</math>

<math>~\rho</math>

<math>~=</math>

<math>~\rho_e \phi^{n_e}</math>

<math>~=</math>

<math>~\rho_0 \biggl(\frac{\rho_e}{\rho_0}\biggr) \phi^3</math>

<math>~=</math>

<math>~\rho_0 \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{3/2}_i \phi^3</math>

<math>~P</math>

<math>~=</math>

<math>~K_e \rho_e^{1+1/n_e} \phi^{n_e + 1}</math>

<math>~=</math>

<math>K_c \rho_0^{4/3} \biggl(\frac{K_e }{K_c}\biggr) \biggl(\frac{\rho_e}{\rho_0}\biggr)^{4/3} \phi^{4}</math>

<math>=</math>

<math>K_c \rho_0^{5/3} \theta^{5/2}_i \phi^{4}</math>

<math>~r</math>

<math>~=</math>

<math>~\biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{1/2} \rho_e^{(1-n_e)/(2n_e)} \eta</math>

<math>~=</math>

<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/3} \biggl( \frac{K_e}{K_c}\biggr)^{1/2} \biggl( \frac{\rho_e}{\rho_0} \biggr)^{-1/3} \eta</math>

<math>~=</math>

<math>~\biggl[ \frac{K_c}{\pi G} \biggr]^{1/2} \rho_0^{-1/6} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-1} \theta_i^{-1/4} \eta</math>

<math>~M_r</math>

<math>~=</math>

<math>~4\pi \biggl[ \frac{(n_e + 1)K_e}{4\pi G} \biggr]^{3/2} \rho_e^{(3-n_e)/(2n_e)} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>

<math>~=</math>

<math>~4\pi \biggl[ \frac{K_c}{\pi G} \biggr]^{3/2} \biggl( \frac{K_e}{K_c}\biggr)^{3/2} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>

<math>~=</math>

<math>~\biggl( \frac{2^4}{\pi} \biggr)^{1/2} \biggl[ \frac{K_c}{G} \biggr]^{3/2} \rho_0^{1/2} \biggl( \frac{\mu_e}{\mu_c}\biggr)^{-2} \theta_i^{3/4} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr)</math>

Milne's (1930) Presentation


Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


Envelope's Equation of State

As has been detailed in our introductory discussion of analytically expressible equations of state and as is summarized in the following table, often the total gas pressure can be expressed as the sum of three separate components: a component of ideal gas pressure, a component of radiation pressure, and a component due to a degenerate electron gas.

Ideal Gas Degenerate Electron Gas Radiation

LSU Key.png

<math>~P_\mathrm{gas} = \frac{\Re}{\bar{\mu}} \rho T</math>

LSU Key.png

<math>~P_\mathrm{deg} = A_\mathrm{F} F(\chi) </math>

where:  <math>F(\chi) \equiv \chi(2\chi^2 - 3)(\chi^2 + 1)^{1/2} + 3\sinh^{-1}\chi</math>

and:   

<math>\chi \equiv (\rho/B_\mathrm{F})^{1/3}</math>

LSU Key.png

<math>~P_\mathrm{rad} = \frac{1}{3} a_\mathrm{rad} T^4</math>

Milne (1930) considered that the effects of electron degeneracy pressure could be ignored in the envelope of his composite polytrope and, accordingly, employed an expression for the total pressure of the form,

<math>~P</math>

<math>~=</math>

<math>~P_\mathrm{gas} + P_\mathrm{rad} \, .</math>

Milne also introduced the parameter, <math>~\beta</math>, to define the ratio of gas pressure to total pressure in the envelope, that is,

<math>\beta \equiv \frac{P_\mathrm{gas}}{P} \biggr|_\mathrm{env} \, ,</math>

in which case, also,

<math>\frac{P_\mathrm{rad}}{P} \biggr|_\mathrm{env} = 1-\beta </math>         and         <math>\frac{P_\mathrm{gas}}{P_\mathrm{rad}} \biggr|_\mathrm{env} = \frac{\beta}{1-\beta} \, , </math>

or (see Milne's equation 24),

<math>\biggl( \frac{\mathfrak{\Re}}{\mu_e}\biggr) \rho = \frac{1}{3}a_\mathrm{rad}T^3 \biggl( \frac{\beta}{1-\beta} \biggr) \, .</math>

If the parameter, <math>~\beta</math>, is constant throughout the envelope — which Milne assumes — then this last expression can be interpreted as defining a <math>~T(\rho)</math> function throughout the envelope of the form,

<math>T = \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3} \, .</math>

Now, returning to the definition of <math>~\beta</math>, we recognize that the total pressure in the envelope can be written in the form of a (modified) "ideal gas" relation, namely,

<math>~P = \frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho T \, ,</math>

with the specific <math>~T(\rho)</math> behavior just derived. This allows us to write the envelope's total pressure as,

<math>~P</math>

<math>~=</math>

<math>~\frac{1}{\beta}\biggl(\frac{\Re}{\mu_e}\biggr) \rho \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1/3}</math>

 

<math>~=</math>

<math>~ \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \rho^{1 + 1/3}</math>

which can be immediately associated with a polytropic relation of the form,

<math>~P = K_e \rho^{1 + 1/n_e} \, ,</math>

with,

<math>~n_e</math>

<math>~=</math>

<math>~3 \, ,</math>

<math>~K_e</math>

<math>~=</math>

<math>~\biggl[ \biggl( \frac{\Re}{\mu_e}\biggr)^4 \biggl(\frac{1-\beta}{\beta^4}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{1/3} \, .</math>

So, from the solution, <math>~\theta(\xi)</math>, to the Lane-Emden equation of index <math>~n=3</math>, we will be able to determine that,

<math>~\rho</math>

<math>~=</math>

<math>~\rho_e \theta^3 \, ,</math>

and,

<math>~r</math>

<math>~=</math>

<math>~a_3 \xi \, ,</math>

where — see our general introduction to the Lane-Emden equation

<math>~a_3^2</math>

<math>~=</math>

<math>~\biggl( \frac{K_e}{\pi G}\biggr) \rho_e^{-2/3} \, .</math>

In contrast to this approach, Milne (1930) chose to relate the solution to the envelope's <math>~n=3</math> Lane-Emden equation directly to the temperature via the expression,


<math>T = \lambda \theta \, ,</math>

deducing that the corresponding radial scale-factor is (see Milne's equation 27),

<math>~a_3^2|_\mathrm{Milne}</math>

<math>~=</math>

<math>~\frac{1}{\lambda^2} \biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)\, .</math>

In order to demonstrate the relationship between these two radial scale factors, we note that,

<math>~\theta^3</math>

<math>~=</math>

<math>~\biggl(\frac{T}{\lambda}\biggr)^3 = \frac{\rho}{\rho_e}</math>

<math>~\Rightarrow~~~~~\lambda^3</math>

<math>~=</math>

<math>~\rho_e \biggl(\frac{T^3}{\rho}\biggr)</math>

 

<math>~=</math>

<math>~\rho_e \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]</math>

<math>~\Rightarrow~~~~~\lambda^{-2}</math>

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3} \, .</math>

Hence,

<math>~a_3^2|_\mathrm{Milne}</math>

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl[ \biggl( \frac{\Re}{\mu_e}\biggr) \biggl(\frac{1-\beta}{\beta}\biggr) \frac{3}{a_\mathrm{rad}} \biggr]^{-2/3}\biggl(\frac{\Re}{\mu_e}\biggr)^{2} \frac{(1-\beta)}{\beta^2} \biggl(\frac{3}{\pi a_\mathrm{rad}G}\biggr)</math>

 

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl( \frac{1}{\pi G} \biggr) \biggl[ \biggl(\frac{\Re}{\mu_e}\biggr)^{4} \frac{(1-\beta)}{\beta^{4}} \biggl(\frac{3}{a_\mathrm{rad}}\biggr) \biggr]^{1/3}</math>

 

<math>~=</math>

<math>~\rho_e^{-2/3} \biggl( \frac{K_e}{\pi G} \biggr) \, .</math>

It is clear, therefore, that the two radial scale-factors are the same.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation