User:Tohline/SSC/Perspective Reconciliation

From VistrailsWiki
< User:Tohline
Revision as of 23:21, 12 December 2014 by Tohline (talk | contribs) (→‎Linearizing the Key Relations: Changed subscript on last "Delta" from "L" to "E")
Jump to navigation Jump to search

Reconciling Eulerian versus Lagrangian Perspectives

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Linearizing the Key Relations

Continuity Equation
Lagrangian Perspective Eulerian Perspective

<math>~\frac{d\rho}{dt}</math>

<math>~=</math>

<math>~- \rho \nabla\cdot\vec{v}</math>

<math>~\frac{\partial\rho}{\partial t}</math>

<math>~=</math>

<math>~- \rho \nabla\cdot\vec{v} - \vec{v}\cdot \nabla\rho</math>

Spherically Symmetric Initial Configurations & Purely Radial Perturbations

<math>~\frac{d\rho}{dt}</math>

<math>~=</math>

<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr)</math>

<math>~\frac{\partial\rho}{\partial t}</math>

<math>~=</math>

<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho}{\partial r}</math>

In an interval of time, <math>~dt = \partial t</math>, a fluid element initially at position <math>~r_0</math> moves to position, <math>~r = r_0 + r_1 = r_0(1 + \xi)</math>. [For later reference, note that <math>~\xi</math> can be a function of <math>~r_0</math> as well as of <math>~t</math>.] On the righthand side of the expression, the radial coordinate will be handled as follows: From the Lagrangian perspective, <math>~r \rightarrow r_0 (1+ \xi)</math>, while from the Eulerian perspective, we want to stay at the original coordinate location, so <math>~r \rightarrow r_0</math>. From both perspectives,

<math>~v_r = \frac{\partial ( r_0 \xi )}{\partial t} = r_0 \frac{\partial \xi}{\partial t} \, .</math>

Riding with the fluid element (Lagrangian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_L) = \rho_0(1+s_L)</math>, while at a fixed coordinate location (Eulerian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_E) = \rho_0(1 + s_E)</math>. Finally, in maintaining a Lagrangian perspective, we will need to ensure that the same element of mass is being tracked as we "ride along" with the fluid element to its new position. for radial perturbations associated with a spherically symmetric configuration, this means that the differential mass in each spherical shell, <math>~dm = 4\pi r^2 \rho dr</math>, must remain constant; that is,

<math>~4\pi r_0^2 \rho_0 dr_0</math>

<math>~=</math>

<math>~4\pi r^2 \rho dr</math>

 

<math>~=</math>

<math>~4\pi [r_0(1+\xi)]^2 \rho_0(1+s_L) dr</math>

 

<math>~=</math>

<math>~4\pi r_0^2 \rho_0 \biggl(1+2\xi + \cancelto{\mathrm{small}}{\xi^2} + \cdots \biggr) (1+s_L) dr</math>

 

<math>~\approx</math>

<math>~4\pi r_0^2 \rho_0 \biggl(1+2\xi + s_L + 2\cancelto{\mathrm{small}}{\xi s_L} \biggr) dr</math>

<math>~\Rightarrow~~~ \frac{d}{dr}</math>

<math>~\approx</math>

<math>~(1+2\xi + s_L ) \frac{d}{dr_0} \, .</math>

<math>~\frac{d}{dt}\biggl[\rho_0(1+s_L)\biggr]</math>

<math>~=</math>

<math>~- \biggl\{ \frac{\rho_0(1+\cancelto{}{s_L})}{[r_0(1+\cancelto{}{\xi})]^2} \biggr\}(1+2\cancelto{}{\xi s_L}) \frac{\partial}{\partial r_0} \biggl\{ [r_0(1+\cancelto{}{\xi})]^2 v_r \biggr\}</math>

<math>~\Rightarrow~~~ \frac{d s_L}{dt}</math>

<math>~=</math>

<math>~- \biggl[\frac{2v_r}{r_0} + \frac{\partial v_r}{\partial r_0} \biggr] </math>

<math>~\frac{\partial}{\partial t}\biggl[\rho_0(1+s_E)\biggr]</math>

<math>~=</math>

<math>~- \frac{\rho_0(1+\cancelto{\mathrm{small}}{s_E})}{r_0^2} \frac{\partial}{\partial r_0} \biggl( r_0^2 v_r \biggr) - v_r \frac{\partial [\rho_0(1+\cancelto{\mathrm{small}}{s_E})] }{\partial r_0}</math>

<math>~\Rightarrow~~~ \frac{\partial s_E}{\partial t}</math>

<math>~=</math>

<math>~- \biggl[\frac{2v_r}{r_0} + \frac{\partial v_r}{\partial r_0} \biggr] - \frac{v_r}{\rho_0} \frac{\partial \rho_0 }{\partial r_0}</math>

<math>~s_L ~~\rightarrow~~ \Delta_L(r_0) e^{i\omega t}</math>             … and …             <math>~s_E ~~\rightarrow~~ \Delta_E(r_0) e^{i\omega t}</math>

<math>~\xi ~~\rightarrow~~ x(r_0) e^{i\omega t}</math>             <math>\Rightarrow</math>             <math>~v_r ~~\rightarrow~~ (i\omega)r_0 x(r_0) e^{i\omega t}</math>

<math>~e^{i\omega t} \biggl[ (i\omega)\Delta_L + \frac{d\Delta_L}{dt} \biggr]</math>

<math>~=</math>

<math>~- e^{i\omega t} \biggl[ 2(i\omega)x + (i\omega)x + (i\omega)r_0 \frac{\partial x}{\partial r_0} \biggr]</math>

<math>~\Rightarrow ~~~r_0 \frac{\partial x}{\partial r_0} </math>

<math>~=</math>

<math>~- \Delta_L -3 x - \frac{1}{(i\omega)} \biggl[ \cancelto{\mathrm{small}}{v_r \frac{\partial\Delta_L}{\partial r_0} }\biggr]</math>

<math>~e^{i\omega t} (i\omega)\Delta_E </math>

<math>~=</math>

<math>~- e^{i\omega t} \biggl[ 2(i\omega)x + (i\omega)x + (i\omega)r_0 \frac{\partial x}{\partial r_0} \biggr] - \biggl[\frac{1}{\rho_0} \frac{\partial \rho_0}{\partial r_0} \biggr](i\omega)r_0 x e^{i\omega t}</math>

<math>~\Rightarrow ~~~r_0 \frac{\partial x}{\partial r_0} </math>

<math>~=</math>

<math>~- \Delta_E - x \biggl[3 + \frac{\partial \ln\rho_0}{\partial \ln r_0} \biggr] </math>

See Also