Difference between revisions of "User:Tohline/SSC/Perspective Reconciliation"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Reconciling Eulerian versus Lagrangian Perspectives: Begin developing reconciliation as explained by Rosseland)
Line 5: Line 5:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


 
==Introduction==
[[File:CommentButton02.png|right|100px|Comment by J. E. Tohline on 22 June 2015:  Last night I realized that a key to understanding how to reconcile the Eulerian and Lagrangian perspectives was an analysis of the eigenvalue problem for the homogeneous sphere.]]In an [[User:Tohline/SSC/UniformDensity#The_Stability_of_Uniform-Density_Spheres|accompanying discussion]], we have reviewed [http://adsabs.harvard.edu/abs/1937MNRAS..97..582S T. E. Sterne's (1937, MNRAS, 97, 582)] study of radial pulsation modes in the homogeneous sphere.  He solved the eigenvalue problem as defined by the
[[File:CommentButton02.png|right|100px|Comment by J. E. Tohline on 22 June 2015:  Last night I realized that a key to understanding how to reconcile the Eulerian and Lagrangian perspectives was an analysis of the eigenvalue problem for the homogeneous sphere.]]In an [[User:Tohline/SSC/UniformDensity#The_Stability_of_Uniform-Density_Spheres|accompanying discussion]], we have reviewed [http://adsabs.harvard.edu/abs/1937MNRAS..97..582S T. E. Sterne's (1937, MNRAS, 97, 582)] study of radial pulsation modes in the homogeneous sphere.  He solved the eigenvalue problem as defined by the


Line 67: Line 67:
</div>
</div>


==Lagrangian Reformulation==
Here we will repeat the setup and solution of both eigenvalue problems in an effort to reconcile differences.  As we have [[User:Tohline/SSC/UniformDensity#Properties_of_the_Equilibrium_Configuration|explained elsewhere]], an equilibrium, homogeneous, self-gravitating sphere has the following structural properties:
Defining the characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) as,
<div align="center">
<math>\frac{\rho_0}{\rho_c} = 1 \, ,</math>
</div>
<div align="center">
<math>\frac{P_0}{P_c} = 1 - \chi_0^2 \, ,</math>
</div>
<div align="center">
<div align="center">
<math>  
<math>  
\tau_\mathrm{SSC} \equiv \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} ,
\frac{g_0}{g_\mathrm{SSC}} = 2\chi_0  \, ,
</math><br />
</math><br />
</div>
</div>
and the characteristic gravitational acceleration as,
where,
<div align="center">
<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math>
&nbsp;  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  and &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
<math>\rho_c = \frac{3M}{4\pi R^3} \, ,</math>
</div>
and the characteristic gravitational acceleration is defined as,
<div align="center">
<div align="center">
<math>  
<math>  
g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} \, ,
g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} \, .
</math>
</math>
</div>
</div>
we can rewrite the ''Lagrangian-formulated'' wave equation as,
In addition, it will be useful to recognize that the square of the characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) is,
<div align="center">
<math>
\tau_\mathrm{SSC}^2 \equiv \frac{R^2 \rho_c}{P_c}  = \frac{2R^3}{G M} \, .
</math><br />
</div>
 
 
==Lagrangian Reformulation==
 
Quite generally, we can rewrite the ''Lagrangian-formulated'' wave equation as,
<div align="center">
<div align="center">
<math>
<math>
Line 88: Line 109:
</math><br />
</math><br />
</div>
</div>
Note that we are convinced that this expression is error-free because, for example, when the structural properties of an equilibrium, <math>~n=1</math> polytrope are plugged into it, as is demonstrated in an [[User:Tohline/SSC/Stability/Polytropes#MurphyFiedler1985b|accompanying discussion]], we obtain exactly the same 2<sup>nd</sup>-order ODE as published by [http://adsabs.harvard.edu/abs/1985PASAu...6..222M Murphy &amp; Fiedler (1985)].
Note that we are convinced that this expression is error-free because, for example, when the structural properties of an equilibrium, <math>~n=1</math> polytrope are plugged into it, as is demonstrated in an [[User:Tohline/SSC/Stability/Polytropes#MurphyFiedler1985b|accompanying discussion]], we obtain exactly the same 2<sup>nd</sup>-order ODE as published by [http://adsabs.harvard.edu/abs/1985PASAu...6..222M Murphy &amp; Fiedler (1985)].  For an homogeneous sphere, in particular, this expression can be rewritten as follows.
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
( 1-\chi_0^2 )\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4(1-\chi_0^2)}{\chi_0}
-  2\chi_0 \biggr] \frac{dx}{d\chi_0}
+ \frac{1}{\gamma_\mathrm{g}} \biggl[2\biggl(\frac{\omega^2 R^3}{GM}\biggr) + 2(4 - 3\gamma_\mathrm{g}) \biggr]  x
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
( 1-\chi_0^2 )\frac{d^2x}{d\chi_0^2} + \frac{1}{\chi_0}\biggl[4 -  6\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \mathfrak{F}  x \, ,
</math>
  </td>
</tr>
</table>
</div>
where,
<div align="center">
<math>~\mathfrak{F}  \equiv \frac{2}{\gamma_\mathrm{g}} \biggl[\biggl(\frac{\omega^2 R^3}{GM}\biggr) + (4 - 3\gamma_\mathrm{g}) \biggr]  \, .</math>
</div>
This expression precisely matches equation (2) of [http://adsabs.harvard.edu/abs/1937MNRAS..97..582S Sterne (1937)].


==Eulerian Reformulation==
==Eulerian Reformulation==
Line 98: Line 158:
<tr>
<tr>
   <td align="left">
   <td align="left">
<math>~\biggl(\frac{P_0}{P_c}\biggr) \frac{\partial^2 \xi}{\partial \chi_0^2}
<math>~
\biggl(\frac{P_0}{P_c}\biggr) \frac{\partial^2 \xi}{\partial \chi_0^2}
+ \biggl[ \frac{2}{\chi_0}\biggl(\frac{P_0}{P_c}\biggr)  - \frac{g_0 }{g_\mathrm{SSC}}\biggl(\frac{\rho_0}{\rho_c}\biggr) \biggr] \frac{\partial \xi}{\partial \chi_0}
+ \biggl[ \frac{2}{\chi_0}\biggl(\frac{P_0}{P_c}\biggr)  - \frac{g_0 }{g_\mathrm{SSC}}\biggl(\frac{\rho_0}{\rho_c}\biggr) \biggr] \frac{\partial \xi}{\partial \chi_0}
+ \biggl\{ \biggl[\frac{\omega^2\tau_\mathrm{SSC}^2}{\gamma}  + \frac{2}{\chi_0 } \biggl(\frac{2}{\gamma } - 1\biggr)\frac{g_0}{g_\mathrm{SSC}}\biggr]  
+ \biggl\{ \biggl[\frac{\omega^2\tau_\mathrm{SSC}^2}{\gamma}  + \frac{2}{\chi_0 } \biggl(\frac{2}{\gamma } - 1\biggr)\frac{g_0}{g_\mathrm{SSC}}\biggr]  
\biggl(\frac{\rho_0}{\rho_c}\biggr)
\biggl(\frac{\rho_0}{\rho_c}\biggr) - \frac{2}{\chi_0^2} \biggl(\frac{P_0}{P_c}\biggr)  \biggr\} \xi
- \frac{2}{\chi_0^2} \biggl(\frac{P_0}{P_c}\biggr)  \biggr\} \xi
</math>
</math>
   </td>
   </td>
Line 114: Line 174:
</table>
</table>
</div>
</div>
Note that we are convinced that this expression is error-free because, for example, when the structural properties of an equilibrium, [[User:Tohline/SSC/Structure/Other_Analytic_Models#Linear_Density_Distribution|"linear stellar model"]] are plugged into it, we obtain exactly the same 2<sup>nd</sup>-order ODE as published by [http://adsabs.harvard.edu/abs/1967ApJ...148..305S R. Stothers &amp; J. A. Frogel (1967, ApJ, 148, 305)] &#8212; see their equation (2).
Note that we are convinced that this expression is error-free because, for example, when the structural properties of an equilibrium, [[User:Tohline/SSC/Structure/Other_Analytic_Models#Linear_Density_Distribution|"linear stellar model"]] are plugged into it, we obtain exactly the same 2<sup>nd</sup>-order ODE as published by [http://adsabs.harvard.edu/abs/1967ApJ...148..305S R. Stothers &amp; J. A. Frogel (1967, ApJ, 148, 305)] &#8212; see their equation (2). For an homogeneous sphere, in particular, this expression can be rewritten as follows.
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2}
+ \biggl[ \frac{2( 1-\chi_0^2 )}{\chi_0}  - 2\chi_0\biggr] \frac{\partial \xi}{\partial \chi_0}
+ \biggl\{ \frac{1}{\gamma}\biggl[2\biggl( \frac{\omega^2 R^3}{GM} \biggr) + 4\biggl(2 - \gamma\biggr) \biggr]
- \frac{2}{\chi_0^2} ( 1-\chi_0^2 )  \biggr\} \xi
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2}
+ \frac{1}{\chi_0}\biggl[ 2 - 4\chi_0^2\biggr] \frac{\partial \xi}{\partial \chi_0}
+ \biggl\{ \frac{2}{\gamma}\biggl[\biggl( \frac{\omega^2 R^3}{GM} \biggr) + \biggl(4 - 3\gamma\biggr) +\gamma\biggr]
- \frac{2}{\chi_0^2} ( 1-\chi_0^2 )  \biggr\} \xi
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2}
+ \frac{1}{\chi_0}\biggl[ 4 - 6\chi_0^2 + 2(1-\chi_0^2) \biggr] \frac{\partial \xi}{\partial \chi_0}
+ \biggl\{ \mathfrak{F} + \biggl(4 - \frac{2}{\chi_0^2} \biggr) \biggr\} \xi \, .
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2}
+ \frac{1}{\chi_0}\biggl[ 4 - 6\chi_0^2 \biggr] \frac{\partial \xi}{\partial \chi_0}
+ \mathfrak{F} \xi
+ \frac{1}{\chi_0}\biggl[ 2(1-\chi_0^2) \biggr] \frac{\partial \xi}{\partial \chi_0}
+ \biggl(4 - \frac{2}{\chi_0^2} \biggr) \xi
</math>
  </td>
</tr>
</table>
</div>
 
==Reconciliation by Rosseland==
[https://ia600302.us.archive.org/12/items/ThePulsationTheoryOfVariableStars/Rosseland-ThePulsationTheoryOfVariableStars.pdf Rosseland (1969)] points out that these two different formulations can be reconciled by adopting the following dependent coordinate substitution (see his equation 3.11):
<div align="center">
<math>~x \rightarrow \frac{\xi}{\chi_0} \, .</math>
</div>
This means that the derivatives that appear in the above ''Lagrangian formulation'' should be replaced by the expressions,
<div align="center">
<math>~\frac{dx}{d\chi_0} \rightarrow \biggl(\frac{1}{\chi_0}\biggr)\frac{d\xi}{d\chi_0} - \frac{\xi}{\chi_0^2} \, ,</math>
</div>
and,
<div align="center">
<math>~\frac{d^2x}{d\chi_0^2} \rightarrow \biggl(\frac{1}{\chi_0}\biggr)\frac{d^2\xi}{d\chi_0^2} - \biggl( \frac{2}{\chi_0^2} \biggr) \frac{d\xi}{d\chi_0}
+ \frac{2\xi}{\chi_0^3} \, .</math>
</div>
 





Revision as of 17:21, 23 June 2015

Reconciling Eulerian versus Lagrangian Perspectives

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Introduction

Comment by J. E. Tohline on 22 June 2015: Last night I realized that a key to understanding how to reconcile the Eulerian and Lagrangian perspectives was an analysis of the eigenvalue problem for the homogeneous sphere.

In an accompanying discussion, we have reviewed T. E. Sterne's (1937, MNRAS, 97, 582) study of radial pulsation modes in the homogeneous sphere. He solved the eigenvalue problem as defined by the

Adiabatic Wave (or Radial Pulsation) Equation

LSU Key.png

<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math>

and, hence, as established via a Lagrangian formulation of the problem. The eigenvectors and eigenvalues that Sterne derived for the first two or three radial modes have also appeared — usually in the context of separate, re-derivations — in other publications: See, for example, §38.2 (pp. 402-403) of [KW94].

After finishing that review, we became aware that a separate study of radial pulsation modes in the homogeneous sphere has been published by S. Rosseland (1969) In his book titled, The Pulsation Theory of Variable Stars (see, specifically his § 3.2, beginning on p. 27). Rosseland solved an eigenvalue problem as defined by the relation,

<math>~\frac{\partial}{\partial r} \biggl( \gamma P_0 \nabla\cdot \vec{\xi}\biggr) + \biggl( \omega^2 + \frac{4g_0}{r}\biggr) \rho_0 \xi</math>

<math>~=</math>

<math>~0 \, ,</math>

(see his equation 2.23 on p. 20, with the adiabatic condition being enforced by setting the right-hand-side equal to zero), where,

<math>~\vec\xi = \mathbf{\hat{e}}_r \xi(r) \, .</math>

Rosseland derived this expression in an earlier section of his book via an Eulerian formulation of the problem. Realizing that, for a spherically symmetric system,

<math>\nabla\cdot \vec\xi = \frac{1}{r^2}\frac{\partial}{\partial r}\biggl(r^2 \xi\biggr) = \frac{\partial \xi}{\partial r} + \frac{2\xi}{r} \, ,</math>

as is demonstrated in and accompanying discussion, this relation can be rewritten in the more familiar form of a 2nd-order ODE, namely,

<math>~P_0 \frac{\partial^2 \xi}{\partial r^2} + \biggl[ \frac{2P_0}{r}- \rho_0 g_0 \biggr] \frac{\partial \xi}{\partial r} + \biggl[ \biggl( \frac{\omega^2\rho_c}{\gamma} + \frac{4\rho_c g_0}{\gamma r}\biggr) \biggl(\frac{\rho_0}{\rho_c}\biggr) - \biggl(\frac{2\rho_c g_0 }{r}\biggr)\biggl(\frac{\rho_0}{\rho_c}\biggr) - \frac{2P_0}{r^2} \biggr] \xi </math>

<math>~=</math>

<math>~0 \, .</math>

Here we will repeat the setup and solution of both eigenvalue problems in an effort to reconcile differences. As we have explained elsewhere, an equilibrium, homogeneous, self-gravitating sphere has the following structural properties:

<math>\frac{\rho_0}{\rho_c} = 1 \, ,</math>

<math>\frac{P_0}{P_c} = 1 - \chi_0^2 \, ,</math>

<math> \frac{g_0}{g_\mathrm{SSC}} = 2\chi_0 \, , </math>

where,

<math>P_c = \frac{3G}{8\pi}\biggl( \frac{M^2}{R^4} \biggr) </math>             and           <math>\rho_c = \frac{3M}{4\pi R^3} \, ,</math>

and the characteristic gravitational acceleration is defined as,

<math> g_\mathrm{SSC} \equiv \frac{P_c}{R \rho_c} \, . </math>

In addition, it will be useful to recognize that the square of the characteristic time for dynamical oscillations in spherically symmetric configurations (SSC) is,

<math> \tau_\mathrm{SSC}^2 \equiv \frac{R^2 \rho_c}{P_c} = \frac{2R^3}{G M} \, . </math>


Lagrangian Reformulation

Quite generally, we can rewrite the Lagrangian-formulated wave equation as,

<math> \biggl(\frac{P_0}{P_c}\biggr)\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0}\biggl(\frac{P_0}{P_c}\biggr) - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 . </math>

Note that we are convinced that this expression is error-free because, for example, when the structural properties of an equilibrium, <math>~n=1</math> polytrope are plugged into it, as is demonstrated in an accompanying discussion, we obtain exactly the same 2nd-order ODE as published by Murphy & Fiedler (1985). For an homogeneous sphere, in particular, this expression can be rewritten as follows.

<math>~0</math>

<math>~=</math>

<math>~ ( 1-\chi_0^2 )\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4(1-\chi_0^2)}{\chi_0} - 2\chi_0 \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl[2\biggl(\frac{\omega^2 R^3}{GM}\biggr) + 2(4 - 3\gamma_\mathrm{g}) \biggr] x </math>

 

<math>~=</math>

<math>~ ( 1-\chi_0^2 )\frac{d^2x}{d\chi_0^2} + \frac{1}{\chi_0}\biggl[4 - 6\chi_0^2 \biggr] \frac{dx}{d\chi_0} + \mathfrak{F} x \, , </math>

where,

<math>~\mathfrak{F} \equiv \frac{2}{\gamma_\mathrm{g}} \biggl[\biggl(\frac{\omega^2 R^3}{GM}\biggr) + (4 - 3\gamma_\mathrm{g}) \biggr] \, .</math>

This expression precisely matches equation (2) of Sterne (1937).

Eulerian Reformulation

Using the same characteristic time scale and gravitational acceleration, we can similarly rewrite the Eulerian-formulated expression as,

<math>~ \biggl(\frac{P_0}{P_c}\biggr) \frac{\partial^2 \xi}{\partial \chi_0^2} + \biggl[ \frac{2}{\chi_0}\biggl(\frac{P_0}{P_c}\biggr) - \frac{g_0 }{g_\mathrm{SSC}}\biggl(\frac{\rho_0}{\rho_c}\biggr) \biggr] \frac{\partial \xi}{\partial \chi_0} + \biggl\{ \biggl[\frac{\omega^2\tau_\mathrm{SSC}^2}{\gamma} + \frac{2}{\chi_0 } \biggl(\frac{2}{\gamma } - 1\biggr)\frac{g_0}{g_\mathrm{SSC}}\biggr] \biggl(\frac{\rho_0}{\rho_c}\biggr) - \frac{2}{\chi_0^2} \biggl(\frac{P_0}{P_c}\biggr) \biggr\} \xi </math>

<math>~=</math>

<math>~0 \, .</math>

Note that we are convinced that this expression is error-free because, for example, when the structural properties of an equilibrium, "linear stellar model" are plugged into it, we obtain exactly the same 2nd-order ODE as published by R. Stothers & J. A. Frogel (1967, ApJ, 148, 305) — see their equation (2). For an homogeneous sphere, in particular, this expression can be rewritten as follows.

<math>~0</math>

<math>~=</math>

<math>~ ( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2} + \biggl[ \frac{2( 1-\chi_0^2 )}{\chi_0} - 2\chi_0\biggr] \frac{\partial \xi}{\partial \chi_0} + \biggl\{ \frac{1}{\gamma}\biggl[2\biggl( \frac{\omega^2 R^3}{GM} \biggr) + 4\biggl(2 - \gamma\biggr) \biggr] - \frac{2}{\chi_0^2} ( 1-\chi_0^2 ) \biggr\} \xi </math>

 

<math>~=</math>

<math>~ ( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2} + \frac{1}{\chi_0}\biggl[ 2 - 4\chi_0^2\biggr] \frac{\partial \xi}{\partial \chi_0} + \biggl\{ \frac{2}{\gamma}\biggl[\biggl( \frac{\omega^2 R^3}{GM} \biggr) + \biggl(4 - 3\gamma\biggr) +\gamma\biggr] - \frac{2}{\chi_0^2} ( 1-\chi_0^2 ) \biggr\} \xi </math>

 

<math>~=</math>

<math>~ ( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2} + \frac{1}{\chi_0}\biggl[ 4 - 6\chi_0^2 + 2(1-\chi_0^2) \biggr] \frac{\partial \xi}{\partial \chi_0} + \biggl\{ \mathfrak{F} + \biggl(4 - \frac{2}{\chi_0^2} \biggr) \biggr\} \xi \, . </math>

 

<math>~=</math>

<math>~ ( 1-\chi_0^2 ) \frac{\partial^2 \xi}{\partial \chi_0^2} + \frac{1}{\chi_0}\biggl[ 4 - 6\chi_0^2 \biggr] \frac{\partial \xi}{\partial \chi_0} + \mathfrak{F} \xi + \frac{1}{\chi_0}\biggl[ 2(1-\chi_0^2) \biggr] \frac{\partial \xi}{\partial \chi_0} + \biggl(4 - \frac{2}{\chi_0^2} \biggr) \xi </math>

Reconciliation by Rosseland

Rosseland (1969) points out that these two different formulations can be reconciled by adopting the following dependent coordinate substitution (see his equation 3.11):

<math>~x \rightarrow \frac{\xi}{\chi_0} \, .</math>

This means that the derivatives that appear in the above Lagrangian formulation should be replaced by the expressions,

<math>~\frac{dx}{d\chi_0} \rightarrow \biggl(\frac{1}{\chi_0}\biggr)\frac{d\xi}{d\chi_0} - \frac{\xi}{\chi_0^2} \, ,</math>

and,

<math>~\frac{d^2x}{d\chi_0^2} \rightarrow \biggl(\frac{1}{\chi_0}\biggr)\frac{d^2\xi}{d\chi_0^2} - \biggl( \frac{2}{\chi_0^2} \biggr) \frac{d\xi}{d\chi_0} + \frac{2\xi}{\chi_0^3} \, .</math>



Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


Linearizing the Key Relations

Continuity Equation
Lagrangian Perspective Eulerian Perspective

<math>~\frac{d\rho}{dt}</math>

<math>~=</math>

<math>~- \rho \nabla\cdot\vec{v}</math>

<math>~\frac{\partial\rho}{\partial t}</math>

<math>~=</math>

<math>~- \rho \nabla\cdot\vec{v} - \vec{v}\cdot \nabla\rho</math>

Spherically Symmetric Initial Configurations & Purely Radial Perturbations

<math>~\frac{d\rho}{dt}</math>

<math>~=</math>

<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr)</math>

<math>~\frac{\partial\rho}{\partial t}</math>

<math>~=</math>

<math>~- \frac{\rho}{r^2} \frac{\partial}{\partial r} \biggl( r^2 v_r \biggr) - v_r \frac{\partial \rho}{\partial r}</math>

In an interval of time, <math>~dt = \partial t</math>, a fluid element initially at position <math>~r_0</math> moves to position, <math>~r = r_0 + r_1 = r_0(1 + \xi)</math>. [For later reference, note that <math>~\xi</math> can be a function of <math>~r_0</math> as well as of <math>~t</math>.] On the righthand side of the expression, the radial coordinate will be handled as follows: From the Lagrangian perspective, <math>~r \rightarrow r_0 (1+ \xi)</math>, while from the Eulerian perspective, we want to stay at the original coordinate location, so <math>~r \rightarrow r_0</math>. From both perspectives,

<math>~v_r = \frac{\partial ( r_0 \xi )}{\partial t} = r_0 \frac{\partial \xi}{\partial t} \, .</math>

Riding with the fluid element (Lagrangian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_L) = \rho_0(1+s_L)</math>, while at a fixed coordinate location (Eulerian perspective), <math>~\rho \rightarrow (\rho_0 + \rho_E) = \rho_0(1 + s_E)</math>. Finally, in maintaining a Lagrangian perspective, we will need to ensure that the same element of mass is being tracked as we "ride along" with the fluid element to its new position. For radial perturbations associated with a spherically symmetric configuration, this means that the differential mass in each spherical shell, <math>~dm = 4\pi r^2 \rho dr</math>, must remain constant; that is,

<math>~4\pi r_0^2 \rho_0 dr_0</math>

<math>~=</math>

<math>~4\pi r^2 \rho dr</math>

 

<math>~=</math>

<math>~4\pi [r_0(1+\xi)]^2 \rho_0(1+s_L) dr</math>

 

<math>~=</math>

<math>~4\pi r_0^2 \rho_0 \biggl(1+2\xi + \cancelto{\scriptstyle\text{small}}{\xi^2} + \cdots \biggr) (1+s_L) dr</math>

 

<math>~\approx</math>

<math>~4\pi r_0^2 \rho_0 \biggl(1+2\xi + s_L + 2\cancelto{\scriptstyle\mathrm{small}}{\xi s_L} \biggr) dr</math>

<math>~\Rightarrow~~~ \frac{d}{dr}</math>

<math>~\approx</math>

<math>~(1+2\xi + s_L ) \frac{d}{dr_0} \, .</math>

<math>~\frac{d}{dt}\biggl[\rho_0(1+s_L)\biggr]</math>

<math>~=</math>

<math>~- \biggl\{ \frac{\rho_0(1+\cancelto{}{s_L})}{[r_0(1+\cancelto{}{\xi})]^2} \biggr\}(1+2\cancelto{}{\xi s_L}) \frac{\partial}{\partial r_0} \biggl\{ [r_0(1+\cancelto{}{\xi})]^2 v_r \biggr\}</math>

<math>~\Rightarrow~~~ \frac{d s_L}{dt}</math>

<math>~=</math>

<math>~- \biggl[\frac{2v_r}{r_0} + \frac{\partial v_r}{\partial r_0} \biggr] - \frac{1}{\rho_0} \frac{d\rho_0}{dt}</math>

<math>~\frac{\partial}{\partial t}\biggl[\rho_0(1+s_E)\biggr]</math>

<math>~=</math>

<math>~- \frac{\rho_0(1+\cancelto{\mathrm{small}}{s_E})}{r_0^2} \frac{\partial}{\partial r_0} \biggl( r_0^2 v_r \biggr) - v_r \frac{\partial [\rho_0(1+\cancelto{\mathrm{small}}{s_E})] }{\partial r_0}</math>

<math>~\Rightarrow~~~ \frac{\partial s_E}{\partial t}</math>

<math>~=</math>

<math>~- \biggl[\frac{2v_r}{r_0} + \frac{\partial v_r}{\partial r_0} \biggr] - \frac{v_r}{\rho_0} \frac{\partial \rho_0 }{\partial r_0}</math>

Note: The last term that appears on the righthand side of the two expressions appears to be different. But if, as we are assuming here, <math>~\rho_0</math> has no explicit time dependence but may be considered to be a function of the radial coordinate, <math>~r_0</math>, then the two terms are the same. This is because, quite generically for any scalar function <math>~q</math>, the total time-derivative (Lagrangian perspective) differs from the partial time-derivative (Eulerian perspective) via the expression, <math>dq/dt - \partial q /\partial t = \vec{v}\cdot \nabla q</math>. In our case, <math>~\partial \ln \rho_0/\partial t = 0</math>, so <math>~d\ln\rho_0/dt = \vec{v}\cdot \nabla \ln \rho_0</math>.

<math>~s_L ~~\rightarrow~~ \Delta_L(r_0) e^{i\omega t}</math>             … and …             <math>~s_E ~~\rightarrow~~ \Delta_E(r_0) e^{i\omega t}</math>

<math>~\xi ~~\rightarrow~~ x(r_0) e^{i\omega t}</math>             <math>\Rightarrow</math>             <math>~v_r ~~\rightarrow~~ (i\omega)r_0 x(r_0) e^{i\omega t}</math>

<math>~e^{i\omega t} \biggl[ (i\omega)\Delta_L + \frac{d\Delta_L}{dt} \biggr]</math>

<math>~=</math>

<math>~- e^{i\omega t} \biggl[ 2(i\omega)x + (i\omega)x + (i\omega)r_0 \frac{\partial x}{\partial r_0} \biggr]</math>

<math>~\Rightarrow ~~~r_0 \frac{\partial x}{\partial r_0} </math>

<math>~=</math>

<math>~- \Delta_L -3 x - \frac{1}{(i\omega)} \biggl[ v_r \frac{\partial\Delta_L}{\partial r_0} \biggr]</math>

 

<math>~=</math>

<math>~- \Delta_L - x \biggl[3 + \cancelto{\scriptstyle\mathrm{small}}{\frac{\partial\Delta_L}{\partial \ln r_0} }\biggr]</math>

<math>~e^{i\omega t} (i\omega)\Delta_E </math>

<math>~=</math>

<math>~- e^{i\omega t} \biggl[ 2(i\omega)x + (i\omega)x + (i\omega)r_0 \frac{\partial x}{\partial r_0} \biggr] - \biggl[\frac{1}{\rho_0} \frac{\partial \rho_0}{\partial r_0} \biggr](i\omega)r_0 x e^{i\omega t}</math>

<math>~\Rightarrow ~~~r_0 \frac{\partial x}{\partial r_0} </math>

<math>~=</math>

<math>~- \Delta_E - x \biggl[3 + \frac{\partial \ln\rho_0}{\partial \ln r_0} \biggr] </math>

See Also