Difference between revisions of "User:Tohline/SSC/IsothermalSimilaritySolution"

From VistrailsWiki
Jump to navigation Jump to search
Line 10: Line 10:
==Establishing Set of Governing Equations==
==Establishing Set of Governing Equations==


[[User:Tohline/SSC/IsothermalCollapse#Establishing_Set_of_Governing_Equations|Accompanying chapter discussion]] …
Drawing from an [[User:Tohline/SSC/IsothermalCollapse#IsothermalEulerianFrame|accompanying chapter's introductory discussion]], we begin with the set of governing equations that describe the collapse of isothermal spheres from an Eulerian frame of reference.


<span id="IsothermalEulerianFrame">The lefthand side of the two equations containing time derivatives will take a different form if, alternatively, the choice is made to view the evolution from an ''Eulerian'' frame of reference.  In this case the set of governing equations becomes,</span>
<div align="center">
<div align="center">
<table border="1" cellpadding="8" align="center">
<table border="1" cellpadding="8" align="center">
Line 61: Line 60:
</div>
</div>


Notice that, in place of the standard continuity equation, we will use the following equivalent statement of mass conservation:
Following [[User:Tohline/SSC/IsothermalCollapse#Larson_.281969.29|Larson's (1969) lead]], we have replaced the standard continuity equation with the following equivalent statement of mass conservation:
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">

Revision as of 17:58, 9 July 2017

Similarity Solution

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Several authors (references given, below) have shown that when isothermal pressure gradients are important during a gas cloud's collapse, the equations governing the collapse admit a set of similarity solutions. Certain properties of these solutions can be described analytically and are instructive models for comparison with more detailed, numerical collapse calculations.

Establishing Set of Governing Equations

Drawing from an accompanying chapter's introductory discussion, we begin with the set of governing equations that describe the collapse of isothermal spheres from an Eulerian frame of reference.

Eulerian Frame

<math>~\frac{\partial M_r}{\partial r} </math>

<math>~=</math>

<math>~4\pi r^2 \rho \, , </math>

<math>~\frac{\partial M_r}{\partial t} </math>

<math>~=</math>

<math>~- 4\pi r^2 \rho v_r \, ,</math>

<math>~\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r}</math>

<math>~=</math>

<math>~- c_s^2 \biggl( \frac{\partial \ln \rho}{\partial r}\biggr) - \frac{GM_r}{r^2} \, .</math>

Following Larson's (1969) lead, we have replaced the standard continuity equation with the following equivalent statement of mass conservation:

<math>~\frac{dM_r}{dt}</math>

<math>~=</math>

<math>~0 </math>

<math>~\Rightarrow ~~~ 0</math>

<math>~=</math>

<math>~\frac{\partial M_r}{\partial t} + v_r ~\frac{\partial M_r}{\partial r} </math>

 

<math>~=</math>

<math>~\frac{\partial M_r}{\partial t} +4\pi r^2 \rho v_r \, .</math>

Solution

A similarity solution becomes possible for these equations when the single independent variable,

<math>~\zeta = \frac{c_s t}{r} \, ,</math>

is used to replace both <math>~r</math> and <math>~t</math>. Then, if <math>~M_r</math>, <math>~\rho</math>, and <math>~v_r</math> assume the following forms,

<math>~M_r(r,t)</math>

<math>~=</math>

<math>~\biggl(\frac{c_s^2 t}{G}\biggr) m(\zeta) \, ,</math>

<math>~\rho(r,t)</math>

<math>~=</math>

<math>~\biggl(\frac{c_s^2 }{4\pi G r^2}\biggr) P(\zeta) \, ,</math>

<math>~v_r(r,t)</math>

<math>~=</math>

<math>~- c_s U(\zeta) \, ,</math>

the three coupled partial differential equations reduce to two coupled ordinary differential equations for the functions, <math>~P(\zeta)</math> and <math>~U(\zeta)</math>, namely,

<math>~\frac{dU}{d\zeta}</math>

<math>~=</math>

<math>~ \frac{}{[ (\zeta U +1)^2 - \zeta^2]} \, , </math>

<math>~\frac{dP}{d\zeta}</math>

<math>~=</math>

<math>~\frac{}{[ (\zeta U +1)^2 - \zeta^2]} \, ,</math>

and a single equation defining <math>~m(\zeta)</math>,

<math>~m(\zeta)</math>

<math>~=</math>

<math>~P \biggl[ U + \frac{1}{\zeta} \biggr] \, .</math>


See Especially


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation