Difference between revisions of "User:Tohline/SSC/IsothermalCollapse"

From VistrailsWiki
Jump to navigation Jump to search
Line 6: Line 6:




We begin with the [[User:Tohline/SphericallySymmetricConfigurations/PGE#Spherically_Symmetric_Configurations_.28Part_I.29|set of time-dependent governing equations for spherically symmetric systems]], namely,
We begin with the [[User:Tohline/SphericallySymmetricConfigurations/PGE#Spherically_Symmetric_Configurations_.28Part_I.29|set of time-dependent governing equations for spherically symmetric systems]] — as viewed from a ''Lagrangian'' frame of reference — namely,


<div align="center">
<div align="center">
Line 78: Line 78:
</div>
</div>


In summary, then, the collapse of an isothermal gas cloud can be modeled by appropriately specifying an initial state and value for the sound speed, then integrating forward in time, in a self-consistent fashion, the following coupled set of equations:
<span id="IsothermalLagrangianFrame">In summary, then, the collapse of an isothermal gas cloud can be modeled by appropriately specifying an initial state and value of the sound speed, then integrating forward in time the following coupled set of equations:</span>
<div align="center">
<div align="center">
<table border="1" cellpadding="8" align="center"><tr><td align="center">
<table border="1" cellpadding="8" align="center">
<tr>
  <th align="center">Lagrangian Frame</th>
</tr>
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 128: Line 132:
   <td align="left">
   <td align="left">
<math>~- \frac{1}{\rho}\frac{dP}{dr} - \frac{GM_r}{r^2}  \, .</math>
<math>~- \frac{1}{\rho}\frac{dP}{dr} - \frac{GM_r}{r^2}  \, .</math>
  </td>
</tr>
</table>
</td></tr></table>
</div>
<span id="IsothermalEulerianFrame">The lefthand side of the two equations containing time derivatives will take a different form if, alternatively, the choice is made to view the evolution from an ''Eulerian'' frame of reference.  In this case the set of governing equations becomes,</span>
<div align="center">
<table border="1" cellpadding="8" align="center">
<tr>
  <th align="center">Eulerian Frame</th>
</tr>
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~P</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~c_s^2 \rho </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{dM_r}{dr} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi r^2 \rho \, ,  </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \rho}{\partial t} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \biggl[\frac{1}{r^2}\frac{\partial (r^2  \rho v_r)}{\partial r}  \biggr] \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{1}{\rho}\frac{\partial P}{\partial r} - \frac{GM_r}{r^2}  \, .</math>
   </td>
   </td>
</tr>
</tr>

Revision as of 21:17, 7 July 2017

Collapse of Isothermal Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


We begin with the set of time-dependent governing equations for spherically symmetric systems — as viewed from a Lagrangian frame of reference — namely,

Equation of Continuity

<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>


Euler Equation

<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>


Poisson Equation

<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho \, ,</math>


but, in place of the adiabatic form of the 1st Law of Thermodynamics, we enforce isothermality both in space and time by adopting the,

Isothermal Equation of State

<math>~P = c_s^2 \rho \, ,</math>

where, <math>~c_s</math>, is the isothermal sound speed. Recognizing that the differential element of mass that is contained within a spherical shell of width, <math>~dr</math>, at radial location, <math>~r</math>, is,

<math>~dm = 4\pi r^2 \rho dr \, ,</math>

we see that the mass enclosed within radius, <math>~r</math>, is,

<math>~M_r</math>

<math>~=</math>

<math>~4\pi \int_0^4 r^2 \rho dr \, .</math>

Hence, we find from the Poisson equation that,

<math>~\frac{d\Phi}{dr}</math>

<math>~=</math>

<math>~\frac{G}{r^2} \biggl[ 4\pi \int_0^4 r^2 \rho dr \biggr] = \frac{GM_r}{r^2} \, ,</math>

which, when combined with the Euler equation gives the,

Combined Euler + Poisson Equation

<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{GM_r}{r^2} \, . </math>

In summary, then, the collapse of an isothermal gas cloud can be modeled by appropriately specifying an initial state and value of the sound speed, then integrating forward in time the following coupled set of equations:

Lagrangian Frame

<math>~P</math>

<math>~=</math>

<math>~c_s^2 \rho </math>

<math>~\frac{dM_r}{dr} </math>

<math>~=</math>

<math>~4\pi r^2 \rho \, , </math>

<math>~\frac{d\rho}{dt} </math>

<math>~=</math>

<math>~- \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] \, ,</math>

<math>~\frac{dv_r}{dt} </math>

<math>~=</math>

<math>~- \frac{1}{\rho}\frac{dP}{dr} - \frac{GM_r}{r^2} \, .</math>

The lefthand side of the two equations containing time derivatives will take a different form if, alternatively, the choice is made to view the evolution from an Eulerian frame of reference. In this case the set of governing equations becomes,

Eulerian Frame

<math>~P</math>

<math>~=</math>

<math>~c_s^2 \rho </math>

<math>~\frac{dM_r}{dr} </math>

<math>~=</math>

<math>~4\pi r^2 \rho \, , </math>

<math>~\frac{\partial \rho}{\partial t} </math>

<math>~=</math>

<math>~- \biggl[\frac{1}{r^2}\frac{\partial (r^2 \rho v_r)}{\partial r} \biggr] \, ,</math>

<math>~\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r}</math>

<math>~=</math>

<math>~- \frac{1}{\rho}\frac{\partial P}{\partial r} - \frac{GM_r}{r^2} \, .</math>

See Especially


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation