Difference between revisions of "User:Tohline/SR/Ptot QuarticSolution"

From VistrailsWiki
Jump to navigation Jump to search
(Summarize)
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Determining Temperature from Density and Pressure=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
 
As has been [[User:Tohline/SR/PressureCombinations#Derivation|derived elsewhere]], the normalized total pressure can be written as,
=Determining Temperature from Density and Pressure=
As has been [http://www.vistrails.org/index.php/User:Tohline/SR/PressureCombinations#Derivation derived elsewhere], the normalized total pressure can be written as,


<div align="center">
<div align="center">
{{User:Tohline/Math/EQ_PressureTotal01}}
{{User:Tohline/Math/EQ_PressureTotal01}}
</div>
</div>
 
To solve this algebraic equation for the normalized temperature <math>~T/T_e</math>, given values of the normalized total pressure <math>~p_\mathrm{total}</math> and the normalized density <math>~\chi</math>, we first realize that the equation can be written in the form,
==Relevant Quartic Equation==
To solve this algebraic equation for the normalized temperature <math>T/T_e</math>, given values of the normalized total pressure <math>p_\mathrm{total}</math> and the normalized density <math>\chi</math>, we first realize that the equation can be written in the form,
<div align="center">
<div align="center">
<math>
<math>~
z^4 + a_1 z + a_0 = 0 ,
a_4z^4 + a_1 z - a_0 = 0 \, ,
</math>
</math>
</div>
</div>
Line 18: Line 15:
<div align="center">
<div align="center">
<math>
<math>
z  \equiv \frac{T}{T_e} ,
~z  \equiv \frac{T}{T_e} \, ,
</math>
</div>
and the coefficients,
<div align="center">
<math>~
a_4 \equiv \frac{8\pi^4}{15} \, ,
</math><br/>
</math><br/>
<math>
<math>~
a_1 \equiv \frac{15}{\pi^4} \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \chi^3 ,
a_1 \equiv 8\biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \chi^3 \, ,
</math><br/>
</math><br/>
<math>
<math>~
a_0 \equiv \frac{15}{8\pi^4}\biggl[p_\mathrm{total} - F(\chi)  \biggr] .
a_0 \equiv \biggl[p_\mathrm{total} - F(\chi)  \biggr] \, .
</math>
</math>
</div>
</div>
Following the outline and notation used by [http://mathworld.wolfram.com/QuarticEquation.html mathworld.wolfram.com] to identify the roots of an arbitrary quartic equation, we can set <math>a_3 = a_2 = 0</math> and deduce that the only root that will give physically relevant temperatures &#8212; for example, non-imaginary values that are positive &#8212; is,
 
 
==Mathematical Manipulation==
===Quartic Equation Solution===
 
Following the [http://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method Summary of Ferrari's method] that is presented in Wikipedia's discussion of the Quartic Function to identify the roots of an arbitrary quartic equation, we can set the coefficients of the cubic and quadratic terms both to zero and deduce that the only root that will give physically relevant temperatures &#8212; for example, real and non-negative &#8212; is,
<div align="center">
<div align="center">
<math>
<math>
z_3 = \frac{1}{2}\biggl[E-R\biggr] ,
2z = \biggl[\frac{2a_1}{a_4 W}-W^2\biggr]^{1/2} - W ,
</math>
</math>
</div>
</div>
Line 36: Line 44:
<div align="center">
<div align="center">
<math>
<math>
R \equiv y_1^{1/2} ,
\frac{1}{2}W^2 \equiv R^{-1/3}\biggl[R^{2/3} - \frac{a_0}{3a_4} \biggr] ,
</math><br/>
</math><br/>
<math>
<math>
E \equiv \biggl[ \frac{2a_1}{R} - R^2  \biggr]^{1/2} = y_1^{1/2}\biggl[ 2a_1 y_1^{-3/2} - 1  \biggr]^{1/2},
R \equiv \biggl( \frac{a_1}{4a_4} \biggr)^2 \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr] ,
</math><br />
<math>
\lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} .
</math>
</math>
</div>
</div>
and <math>y_1</math> is the <i>real</i> root of the following cubic equation:
Defining,
<div align="center">
<div align="center">
<math>
<math>
y^3 -4a_0 y -a_1^2 = 0 .
\phi \equiv \frac{2a_1}{a_4 W^3} ~~~~~\Rightarrow ~~~~~ W = 2\biggl(\frac{a_1}{4a_4 \phi} \biggr)^{1/3} ,
</math>
</math>
</div>
</div>
So, fully in terms of the real root of this cubic equation, the desired solution of our quartic equation is,
and realizing that, from one of the above expressions,  
<div align="center">
<div align="center">
<math>
<math>
z_3 = \frac{1}{2}y_1^{1/2} \biggl\{ \biggl[ 2a_1 y_1^{-3/2} - 1 \biggr]^{1/2} -1 \biggr\} .
\frac{1}{2}W^2  = \biggl[ \frac{a_1^4}{2^8 a_4^4 R}\biggr]^{1/3}\biggl[\biggl( \frac{2^4 a_4^2 R}{a_1^2}\biggr)^{2/3} - \biggl( \frac{2^8 a_0^3 a_4}{3^3 a_1^4} \biggr)^{1/3}  \biggr]
= \biggl[ \frac{a_1}{2^2 a_4}\biggr]^{2/3} \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{-1/3}\biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\} ,
</math><br/>
</div>
we can rewrite the desired root of our quartic equation in the form,
<div align="center">
<math>
z = \biggl(\frac{a_1}{4a_4}\biggr)^{1/3} \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] ,
</math>
</math>
</div>
</div>
 
with,
==Relevant Cubic Formula==
The relevant cubic equation is,
<div align="center">
<div align="center">
<math>
<math>
y^3 +b_1 y +b_0 = 0 ,
\phi = 2^{3/2} \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{1/2}
\biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\}^{-3/2} .
</math>
</math>
</div>
</div>
where,
 
===Key Dimensionless Parameters===
From the above solution, there appear to be two key dimensionless parameters that can be formed from a strategic combination of the coefficients of the original quartic equation. They are,
<div align="center">
<div align="center">
<math>
<math>~
b_1 \equiv -4a_0 ~~~~~ \mathrm{and} ~~~~~ b_0 \equiv -a_1^2 .
\lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} , ~~~~~\mathrm{and}~~~~~
</math><br/>
\theta^3 \equiv \frac{a_1}{2^2 a_4} .
</math>
</div>
</div>
According to [http://mathworld.wolfram.com/CubicFormula.html mathworld.wolfram.com], the roots of a cubic equation having this form include a real root given by the expression,
[Note, as well, that the product <math>~\lambda\theta = (4a_0)/(3a_1)</math>.]  
The desired solution of our quartic equation is a product of <math>~\theta</math> and an expression that is only a function of <math>~\lambda</math>.  Specifically, we can write,
<div align="center">
<div align="center">
<math>
<math>~
y_1 = \mathcal{S} + \mathcal{T} ,
\frac{z}{\theta} = \mathcal{K}(\lambda) ,
</math>
</math>
</div>
</div>
where,
where, in terms of the above-defined function <math>~\phi(\lambda)</math>,
<div align="center">
<div align="center">
<math>
<math>~
\mathcal{D} \equiv \biggl( \frac{b_1}{3} \biggr)^2 + \biggl(\frac{b_0}{2}\biggr)^2
\mathcal{K}(\phi(\lambda)) \equiv \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] .
= \biggl( \frac{4a_0}{3} \biggr)^2 + \biggl(\frac{a_1^2}{2}\biggr)^2
= \biggl(\frac{a_1^2}{2}\biggr)^2 \biggl[ 1 + \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 \biggr] ,
</math><br />
<math>
\mathcal{S}  \equiv \biggl[ -\frac{b_0}{2} + \mathcal{D}^{1/2} \biggr]^{1/3}
= \biggl[ \frac{a_1^2}{2} + \mathcal{D}^{1/2} \biggr]^{1/3}
= \biggl[ \frac{a_1^2}{2} \biggr]^{1/3} \biggl\{1 + \biggl[ 1 + \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 \biggr]^{1/2}  \biggr\}^{1/3} ,
</math><br/>
<math>
\mathcal{T}  \equiv \biggl[ -\frac{b_0}{2} - \mathcal{D}^{1/2} \biggr]^{1/3}
= \biggl[ \frac{a_1^2}{2} - \mathcal{D}^{1/2} \biggr]^{1/3}
= \biggl[ \frac{a_1^2}{2} \biggr]^{1/3} \biggl\{1 - \biggl[ 1 + \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 \biggr]^{1/2}  \biggr\}^{1/3} .
</math>
</math>
</div>
</div>


==Summary==
 
Hence, defining,
===Limiting Regimes===
We can immediately see that this solution makes sense in the present context.  In order for the temperature &#8212; that is, <math>~z</math> &#8212; to be real and nonnegative, the function <math>~\phi(\lambda)</math> must be greater than or equal to <math>~2</math>.  This limiting value occurs when the dimensionless parameter, <math>~\lambda = 0</math>.  The constraint <math>~\lambda \ge 0</math> is satisfied as long as the three coefficients of the quartic equation are real and nonnegative, which is certainly true for our specific problem.
 
Looking at the limiting functional behavior of our solution, we see that when <math>~0 \le \lambda \ll 1</math>,
<div align="center">
<div align="center">
<math>
<math>~
\mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 ,
\phi \approx 2 + \frac{3}{2^{2/3}}\lambda
</math><br />
 
<math>~
\Rightarrow ~~~~~ z \approx \frac{3\lambda}{2^2} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \frac{a_0}{a_1} .
</math>
</math>
</div>
</div>
and
 
 
We see, as well, that when <math>~\lambda \gg 1</math>,
<div align="center">
<div align="center">
<math>
<math>~
f_Q(\mathcal{K}) \equiv y_1 \biggl[ \frac{2}{a_1^2} \biggr]^{1/3} =
\phi \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{3/2}
\biggl\{1 + \biggl[ 1 + \mathcal{K} \biggr]^{1/2} \biggr\}^{1/3}
</math><br />
+ \biggl\{1 - \biggl[ 1 + \mathcal{K} \biggr]^{1/2} \biggr\}^{1/3} ,
 
<math>~
\Rightarrow ~~~~~ z \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{1/4} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \biggl( \frac{a_0}{a_4} \biggr)^{1/4} .
</math>
</math>
</div>
</div>
we can write the desired solution of the quartic equation as,
 
==Physical Implications==
Clearly, a key dimensionless physical parameter for this problem is,
<div align="center">
<div align="center">
<math>
<math>~
z_3 = 2^{-7/6} a_1^{1/3} [f_Q(\mathcal{K})]^{1/2} \biggl\{ \biggl[ 8^{1/2} [f_Q(\mathcal{K})]^{-3/2} - 1  \biggr]^{1/2}  -1 \biggr\} .
\mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 =
\biggl\{ \frac{1}{5} \biggl[ \frac{\pi^2}{3} \biggl(\frac{\bar{\mu} m_u}{\mu_e m_p} \biggr) \biggr]^2
\biggl[ \frac{p_\mathrm{total} - F(\chi)}{\chi^6} \biggr] \biggr\}^2 .
</math>
</math>
</div>
</div>
And, because <math>~z_3 \propto T</math> and <math>~a_1 \propto \rho</math>, the above solution tells us that the product <math>~T \rho^{-1/3}</math> can be expressed as a function of this single parameter, <math>~\mathcal{K}</math>.
=Related Wikepedia Links=
* [http://en.wikipedia.org/wiki/Quartic_function Quartic Function]
* [http://mathworld.wolfram.com/QuarticEquation.html mathworld.wolfram.com]


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 03:00, 13 July 2015

Determining Temperature from Density and Pressure

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

As has been derived elsewhere, the normalized total pressure can be written as,

LSU Key.png

<math>~p_\mathrm{total} = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) 8 \chi^3 \frac{T}{T_e} + F(\chi) + \frac{8\pi^4}{15} \biggl( \frac{T}{T_e} \biggr)^4</math>

To solve this algebraic equation for the normalized temperature <math>~T/T_e</math>, given values of the normalized total pressure <math>~p_\mathrm{total}</math> and the normalized density <math>~\chi</math>, we first realize that the equation can be written in the form,

<math>~ a_4z^4 + a_1 z - a_0 = 0 \, , </math>

where,

<math> ~z \equiv \frac{T}{T_e} \, , </math>

and the coefficients,

<math>~ a_4 \equiv \frac{8\pi^4}{15} \, , </math>
<math>~ a_1 \equiv 8\biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \chi^3 \, , </math>
<math>~ a_0 \equiv \biggl[p_\mathrm{total} - F(\chi) \biggr] \, . </math>


Mathematical Manipulation

Quartic Equation Solution

Following the Summary of Ferrari's method that is presented in Wikipedia's discussion of the Quartic Function to identify the roots of an arbitrary quartic equation, we can set the coefficients of the cubic and quadratic terms both to zero and deduce that the only root that will give physically relevant temperatures — for example, real and non-negative — is,

<math> 2z = \biggl[\frac{2a_1}{a_4 W}-W^2\biggr]^{1/2} - W , </math>

where,

<math> \frac{1}{2}W^2 \equiv R^{-1/3}\biggl[R^{2/3} - \frac{a_0}{3a_4} \biggr] , </math>
<math> R \equiv \biggl( \frac{a_1}{4a_4} \biggr)^2 \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr] , </math>
<math> \lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} . </math>

Defining,

<math> \phi \equiv \frac{2a_1}{a_4 W^3} ~~~~~\Rightarrow ~~~~~ W = 2\biggl(\frac{a_1}{4a_4 \phi} \biggr)^{1/3} , </math>

and realizing that, from one of the above expressions,

<math> \frac{1}{2}W^2 = \biggl[ \frac{a_1^4}{2^8 a_4^4 R}\biggr]^{1/3}\biggl[\biggl( \frac{2^4 a_4^2 R}{a_1^2}\biggr)^{2/3} - \biggl( \frac{2^8 a_0^3 a_4}{3^3 a_1^4} \biggr)^{1/3} \biggr] = \biggl[ \frac{a_1}{2^2 a_4}\biggr]^{2/3} \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{-1/3}\biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\} , </math>

we can rewrite the desired root of our quartic equation in the form,

<math> z = \biggl(\frac{a_1}{4a_4}\biggr)^{1/3} \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] , </math>

with,

<math> \phi = 2^{3/2} \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{1/2} \biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\}^{-3/2} . </math>

Key Dimensionless Parameters

From the above solution, there appear to be two key dimensionless parameters that can be formed from a strategic combination of the coefficients of the original quartic equation. They are,

<math>~ \lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} , ~~~~~\mathrm{and}~~~~~ \theta^3 \equiv \frac{a_1}{2^2 a_4} . </math>

[Note, as well, that the product <math>~\lambda\theta = (4a_0)/(3a_1)</math>.] The desired solution of our quartic equation is a product of <math>~\theta</math> and an expression that is only a function of <math>~\lambda</math>. Specifically, we can write,

<math>~ \frac{z}{\theta} = \mathcal{K}(\lambda) , </math>

where, in terms of the above-defined function <math>~\phi(\lambda)</math>,

<math>~ \mathcal{K}(\phi(\lambda)) \equiv \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] . </math>


Limiting Regimes

We can immediately see that this solution makes sense in the present context. In order for the temperature — that is, <math>~z</math> — to be real and nonnegative, the function <math>~\phi(\lambda)</math> must be greater than or equal to <math>~2</math>. This limiting value occurs when the dimensionless parameter, <math>~\lambda = 0</math>. The constraint <math>~\lambda \ge 0</math> is satisfied as long as the three coefficients of the quartic equation are real and nonnegative, which is certainly true for our specific problem.

Looking at the limiting functional behavior of our solution, we see that when <math>~0 \le \lambda \ll 1</math>,

<math>~ \phi \approx 2 + \frac{3}{2^{2/3}}\lambda </math>

<math>~ \Rightarrow ~~~~~ z \approx \frac{3\lambda}{2^2} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \frac{a_0}{a_1} . </math>


We see, as well, that when <math>~\lambda \gg 1</math>,

<math>~ \phi \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{3/2} </math>

<math>~ \Rightarrow ~~~~~ z \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{1/4} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \biggl( \frac{a_0}{a_4} \biggr)^{1/4} . </math>

Physical Implications

Clearly, a key dimensionless physical parameter for this problem is,

<math>~ \mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 = \biggl\{ \frac{1}{5} \biggl[ \frac{\pi^2}{3} \biggl(\frac{\bar{\mu} m_u}{\mu_e m_p} \biggr) \biggr]^2 \biggl[ \frac{p_\mathrm{total} - F(\chi)}{\chi^6} \biggr] \biggr\}^2 . </math>

And, because <math>~z_3 \propto T</math> and <math>~a_1 \propto \rho</math>, the above solution tells us that the product <math>~T \rho^{-1/3}</math> can be expressed as a function of this single parameter, <math>~\mathcal{K}</math>.

Related Wikepedia Links

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation