User:Tohline/SR/PoissonOrigin

From VistrailsWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Origin of the Poisson Equation

In deriving the,

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

we will follow closely the presentation found in §2.1 of [BT87].


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

According to Isaac Newton's inverse-square law of gravitation, the acceleration, <math>~\vec{a}(\vec{x})</math>, felt at any point in space, <math>~\vec{x}</math>, due to the gravitational attraction of a distribution of mass, <math>~\rho(\vec{x})</math>, is obtained by integrating over the accelerations exerted by each small mass element, <math>~\rho(\vec{x}^{~'}) d^3x'</math>, as follows:

<math>~\vec{a}(\vec{x})</math>

<math>~=</math>

<math>~ \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' \, , </math>

[BT87], p. 31, Eq. (2-2)

where, <math>~G</math> is the universal gravitational constant.

Step 1

In the astrophysics literature, it is customary to adopt the following definition of the,

Scalar Gravitational Potential

<math>~ \Phi(\vec{x})</math>

<math>~\equiv</math>

<math>~ -G \int \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math>

[BT87], p. 31, Eq. (2-3)
[EFE], §10, p. 17, Eq. (11)
[T78], §4.2, p. 77, Eq. (12)

(Note:   As we have detailed in a separate discussion, throughout [EFE] Chandrasekhar adopts a different sign convention as well as a different variable name to represent the gravitational potential.) Recognizing that the gradient of the function, <math>~|\vec{x}^{~'} - \vec{x}|^{-1}</math>, with respect to <math>~\vec{x}</math> is,

<math>~\nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]</math>

<math>~=</math>

<math>~ \frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3} \, , </math>

[BT87], p. 31, Eq. (2-4)

and given that, in the above expression for the gravitational acceleration, the integration is taken over the volume that is identified by the primed <math>~(\vec{x}~{'})</math>, rather than the unprimed <math>~(\vec{x})</math>, coordinate system, we find that we may write the gravitational acceleration as,

<math>~\vec{a}(\vec{x})</math>

<math>~=</math>

<math>~\int G\rho(\vec{x}^{~'}) \nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x' </math>

 

<math>~=</math>

<math>~ \nabla_x \biggl\{ G \int \biggl[ \frac{\rho(\vec{x}^{~'}) }{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x'\biggr\}</math>

 

<math>~=</math>

<math>~-\nabla_x \Phi \, .</math>

[BT87], p. 31, Eq. (2-5)

Step 2

Next, we realize that the divergence of the gravitational acceleration takes the form,

<math>~\nabla_x \cdot \vec{a}(\vec{x})</math>

<math>~=</math>

<math>~ \nabla_x \cdot \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' </math>

 

<math>~=</math>

<math>~ \int G\rho(\vec{x}^{~'}) \biggl\{ \nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] \biggr\} d^3 x' \, . </math>

[BT87], p. 31, Eq. (2-6)

Examining the expression inside the curly braces, we find that,

<math>~\nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] </math>

<math>~=</math>

<math>~ - \frac{3}{|\vec{x}^{~'} - \vec{x}|^3} + 3 \biggl[ \frac{ (\vec{x}^{~'} - \vec{x}) \cdot (\vec{x}^{~'} - \vec{x}) }{|\vec{x}^{~'} - \vec{x}|^5}\biggr] </math>

(Note:   Ostensibly, this last expression is the same as equation 2-7 of [BT87], but apparently there is a typesetting error in the BT87 publication. As printed, the denominator of the first term on the right-hand side is <math>~|\vec{x}^{~'} - \vec{x}|^1</math>, whereas it should be <math>~|\vec{x}^{~'} - \vec{x}|^3</math> as written here.) When <math>~(\vec{x}^{~'} - \vec{x}) \ne 0</math>, we may cancel the factor <math>~|\vec{x}^{~'} - \vec{x}|^2</math> from top and bottom of the last term in this equation to conclude that,

<math>~\nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] = 0</math>

      when,      

<math>~ (\vec{x}^{~'} \ne \vec{x}) \, . </math>

[BT87], p. 31, Eq. (2-8)

Therefore, any contribution to the integral must come from the point <math>~\vec{x}^{~'} = \vec{x}</math>, and we may restrict the volume of integration to a small sphere … centered on this point. Since, for a sufficiently small sphere, the density will be almost constant through this volume, we can take <math>~\rho(\vec{x}~{'}) = \rho(\vec{x})</math> out of the integral. Via the divergence theorem (for details, see appendix 1.B — specifically, equation 1B-42 — of [BT87]), the remaining volume integral may be converted into a surface integral over the small volume centered on the point <math>~\vec{x}^{~'} = \vec{x}</math> and, in turn, this surface integral may be written in terms of an integral over the solid angle, <math>~d^2\Omega</math>, to give:

<math>~\nabla_x \cdot \vec{a}(\vec{x})</math>

<math>~=</math>

<math>~ -G\rho(\vec{x}) \int d^2\Omega </math>

 

<math>~=</math>

<math>~ -4\pi G\rho(\vec{x}) \, . </math>

[BT87], p. 32, Eq. (2-9b)

Step 3

Finally, combining the results of Step 1 and Step 2 gives the desired,

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

which serves as one of the principal governing equations in our examination of the Structure, Stability, & Dynamics of Self-Gravitating Fluids.

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation