User:Tohline/DarkMatter/UniformSphere

From VistrailsWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Force Exerted by a Uniform-Density Shell or Sphere

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Tohline 1982

General Derivation from Notes Dated 29 November 1982

If the force per unit mass exerted at the position, <math>~\vec{r}</math>, from a single point mass, <math>~m</math>, is given by,

<math>~\vec{F}</math>

<math>~=</math>

<math>~- \biggl( \frac{G^'m}{r} \biggr) \frac{\vec{r}}{r} \, ,</math>

then the force per unit mass exerted at <math>~\vec{x}</math> by a continuous mass distribution, whose mass density is defined by the function <math>~\rho(\vec{x}^')</math>, is,

<math>~\vec{F}(\vec{x})</math>

<math>~=</math>

<math>~- \int G^' \rho(\vec{x}^') \biggl[ \frac{\vec{x}^' - \vec{x}}{| \vec{x}^' - \vec{x} |^2} \biggr] d^3x^' \, .</math>

This central force can also be expressed in terms of the gradient of a scalar potential, <math>~\Phi(\vec{x})</math>, specifically,

<math>~\vec{F}(\vec{x})</math>

<math>~=</math>

<math>~- \vec\nabla\Phi(\vec{x}) \, ,</math>

where,

<math>~\Phi(\vec{x}) </math>

<math>~=</math>

<math>~ \int G^' \rho(\vec{x}^') \ln | \vec{x}^' - \vec{x} | d^3x^' \, .</math>

For a spherically symmetric mass distribution, <math>~\rho(r^')</math>, the magnitude of the force that is directed along the radial vector, <math>~\vec{r}^'</math>, and measured from the center of the mass distribution can be expressed as the following single integral over <math>~r^'</math>:

<math>~F(r) \equiv \vec{F}\cdot \frac{\vec{r}}{r} </math>

<math>~=</math>

<math>~ -2\pi G^' \int\limits_{R_1}^{R_2} \rho(r^') (r^')^2 \biggl[\frac{1}{r} + \frac{1}{2r^2 r^'} \biggl( r^2 - {r^'}^2 \biggr) \ln\biggl( \frac{r^' + r}{|r^' - r|} \biggr) \biggr] dr^' \, .</math>

This integral can be completed analytically if <math>~\rho(r^') = \rho_0</math>, that is, for a uniform-density mass distribution. Independent of whether the limits of integration, <math>~R_1</math> and <math>~R_2</math>, are less than or greater than <math>~r</math>, the integral gives,

<math>~F(r) </math>

<math>~=</math>

<math>~ - \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ \biggl( R_2^3 - R_1^3 \biggr) + r^2 \biggl(R_2 - R_1\biggr) </math>

 

 

<math>~ + r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_1}{r} \biggr)^4 - \biggl( \frac{R_1}{r} \biggr)^2\biggr] \ln\biggl( \frac{R_1 + r}{|R_1 - r|} \biggr) </math>

 

 

<math>~ - r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] \ln\biggl( \frac{R_2 + r}{|R_2 - r|} \biggr) \biggr\} \, .</math>

If the position, <math>~r</math>, is located outside of a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~R_2 < r</math>, so the aggregate acceleration becomes,

<math>~F(r)_\mathrm{out} </math>

<math>~=</math>

<math>~ - \frac{3G^'}{8r} \biggl( \frac{4\pi}{3}\rho_0 \biggr) \biggl\{ R_2^3 + r^2 R_2 - r^3 \biggl[ \frac{1}{2} + \frac{1}{2}\biggl( \frac{R_2}{r} \biggr)^4 - \biggl( \frac{R_2}{r} \biggr)^2\biggr] \ln\biggl( \frac{r+R_2}{r- R_2} \biggr) \biggr\} </math>

 

<math>~=</math>

<math>~ - \frac{G^' M(R_2)}{r} \biggl\{ 1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{R_2}{r} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} \biggr\} \, , </math>

where, <math>~M(R_2) \equiv 4\pi \rho_0 R_2^3/3</math>. If the position, <math>~r</math>, is located interior to a uniform-density shell, then <math>~r < R_1 < R_2</math> and the aggregate acceleration is,

<math>~F(r)_\mathrm{shell} </math>

<math>~=</math>

<math>~ - \frac{4\pi}{3} G^' \rho_0 R_2 r \biggl\{1 - \frac{R_1}{R_2} - 3 \sum_{n=1}^{\infty} \biggl[ \biggl( \frac{r}{R_2} \biggr)^{2n} - \frac{R_1}{R_2} \biggl( \frac{r}{R_1} \biggr)^{2n}\biggr] \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} \biggr\} \, . </math>


If <math>~r</math> is inside a uniform-density sphere, then <math>~R_1 = 0</math> and <math>~ r < R_2</math>, so the aggregate acceleration is,

<math>~F(r)_\mathrm{in} </math>

<math>~=</math>

<math>~ - \frac{4\pi}{3} G^' \rho_0 R_2 r \biggl\{ 1 - 3 \sum_{n=1}^{\infty} \biggl( \frac{r}{R_2} \biggr)^{2n} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1} \biggr\} \, . </math>

Limiting Cases

Some limiting cases are of interest for the uniform sphere, i.e., when <math>~R_1 = 0</math>. First, notice that (Gradshteyn & Ryzhik 1965, formula 0.141-2),

<math>~\sum_{n=1}^{\infty} \biggl[(2n-1)(2n+1)(2n+3) \biggr]^{-1}</math>

<math>~=</math>

<math>~ \frac{1}{12} \, .</math>

Sitting on the Surface: Therefore, when <math>~r = R_2</math> — that is, on the surface of the uniform-density sphere,

<math>~F</math>

<math>~=</math>

<math>~ - \frac{3 G^' M(R_2)}{4R_2} \, .</math>

So the force acts as though the mass is all concentrated at a point, not at the center of the sphere, but at a distance <math>~4/3</math> of the sphere's radius away.

Well Inside the Surface: When <math>~r \ll R_2</math>,

<math>~F(r)_\mathrm{in}</math>

<math>~\approx</math>

<math>~ - \frac{G^' M(R_2)}{R_2} \biggl( \frac{r}{R_2} \biggr) \, ,</math>

that is, the acceleration grows linearly with <math>~r</math>, as in any harmonic potential.

Well Outside the Sphere: When <math>~r \gg R_2</math>,

<math>~F(r)_\mathrm{out}</math>

<math>~\approx</math>

<math>~ - \frac{G^' M(R_2)}{r} \, ,</math>

which is in line with the adopted point-mass specification.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation