Difference between revisions of "User:Tohline/Cylindrical 3D"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Equations Cast in Cylindrical Coordinates: Work on Eulerian form of all 3 components of Euler equation)
(→‎Eulerian Formulation: Establish linearization table for continuity equation)
Line 199: Line 199:
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0  
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0  
</math><br />
</math><br />
<table border="1" cellpadding="5">
<tr>
  <td align="center" colspan="3">
<b>Linearize the Continuity Equation assuming</b>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
<math>
Q(\varpi, \phi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}]; \delta q/q_i \ll 1; \dot\varpi_i = \dot z_i = 0</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\frac{\partial\rho}{\partial t}</math>
  </td>
<td align="center">
<math>~~ \rightarrow ~~</math>
  </td>
  <td align="left">
<math>\frac{\partial (\delta\rho) }{\partial t}</math>
  </td>
</tr>
<tr>
  <td align="center">
<math>\frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] =
\frac{\rho \dot\varpi}{\varpi} + \rho\frac{\partial \dot\varpi}{\partial\varpi} + \dot\varpi \frac{\partial \rho}{\partial\varpi}
</math>
  </td>
  <td align="center">
<math>~~ \rightarrow ~~</math>
  </td>
  <td align="left">
<math>
\frac{ (\rho_i + \delta\rho) ( \cancel{\dot\varpi_i} + \delta\dot\varpi)}{\varpi}
+ (\rho_i + \delta\rho) \frac{\partial ( \cancel{\dot\varpi_i} + \delta\dot\varpi)}{\partial\varpi}
+ ( \cancel{\dot\varpi_i} + \delta\dot\varpi) \frac{\partial (\rho_i + \delta\rho)}{\partial\varpi}
</math>
  </td>
</tr>
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>~~ \rightarrow ~~</math>
  </td>
  <td align="left">
<math>
\frac{ \rho_i }{\varpi}  ( \delta\dot\varpi ) + \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} }
+ (\rho_i) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + \cancel {(\delta\rho) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} }
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + \cancel {( \delta\dot\varpi) \frac{\partial (\delta\rho)}{\partial\varpi} }
</math>
  </td>
</tr>
</table>





Revision as of 04:41, 10 March 2013

Equations Cast in Cylindrical Coordinates

Spatial Operators in Cylindrical Coordinates

<math> \nabla f </math>

=

<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi {\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

<math> \nabla^2 f </math>

=

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + {\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>

<math> (\vec{v}\cdot\nabla)f </math>

=

<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + {\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

<math> \nabla \cdot \vec{F} </math>

=

<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + {\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>

Vector Time-Derivatives in Cylindrical Coordinates

<math> \frac{d}{dt}\vec{F} </math>

=

<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

 

=

<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>

=

<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>

Governing Equations

Introducing the above expressions into the principal governing equations gives,

Equation of Continuity

<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>


Euler Equation

<math> {\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = - {\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_\varphi \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Eulerian Formulation

Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,


<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial f}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>

Hence,

Equation of Continuity

<math> \frac{\partial\rho}{\partial t} + \biggl[ \dot\varpi \frac{\partial \rho}{\partial\varpi} \biggr] + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \biggl[ \dot\varphi \frac{\partial \rho}{\partial\varphi} \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr] + \biggl[ \dot{z} \frac{\partial \rho}{\partial z} \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>

<math> \Rightarrow ~~~ \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>

Linearize the Continuity Equation assuming

<math> Q(\varpi, \phi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}]; \delta q/q_i \ll 1; \dot\varpi_i = \dot z_i = 0</math>

<math>\frac{\partial\rho}{\partial t}</math>

<math>~~ \rightarrow ~~</math>

<math>\frac{\partial (\delta\rho) }{\partial t}</math>

<math>\frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] = \frac{\rho \dot\varpi}{\varpi} + \rho\frac{\partial \dot\varpi}{\partial\varpi} + \dot\varpi \frac{\partial \rho}{\partial\varpi} </math>

<math>~~ \rightarrow ~~</math>

<math> \frac{ (\rho_i + \delta\rho) ( \cancel{\dot\varpi_i} + \delta\dot\varpi)}{\varpi} + (\rho_i + \delta\rho) \frac{\partial ( \cancel{\dot\varpi_i} + \delta\dot\varpi)}{\partial\varpi} + ( \cancel{\dot\varpi_i} + \delta\dot\varpi) \frac{\partial (\rho_i + \delta\rho)}{\partial\varpi} </math>

 

<math>~~ \rightarrow ~~</math>

<math> \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} } + (\rho_i) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + \cancel {(\delta\rho) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} } + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + \cancel {( \delta\dot\varpi) \frac{\partial (\delta\rho)}{\partial\varpi} } </math>


<math>\varpi</math> Component of Euler Equation

<math> \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>

<math> \rightarrow ~~~ \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>


<math>\varphi</math> Component of Euler Equation

<math> \frac{d (\varpi\dot\varphi) }{dt} + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>

<math> \rightarrow ~~~ \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>


<math>z</math> Component of Euler Equation

<math> \frac{d \dot{z} }{dt} = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>

<math> \rightarrow ~~~ \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation