Difference between revisions of "User:Tohline/Cylindrical 3D"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Eulerian Formulation: Work on rho*z derivative)
(→‎Eulerian Formulation: Write summary form of linearized continuity equation)
 
(2 intermediate revisions by the same user not shown)
Line 199: Line 199:
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0  
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0  
</math><br />
</math><br />
</div>


<!--
Assuming that the initial (subscript <i>i</i>) configuration is axisymmetric and that, following perturbation, each physical parameter, <math>Q</math>, behaves according to the relation,
TABLE TO LINEARIZE CONTINUITY EQUATION
<div align="center">
<math>
Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 \, ,
</math>
</div>
the linearized form of the continuity equation becomes:
<div align="center">
<table border="1" cellpadding="5" width="95%">
<tr>
  <td align="center" bgcolor="lightblue" colspan="3">
(This has been obtained by combining the expressions highlighted with a lightblue background color from the accompanying table.)
  </td>
</tr>
<tr>
  <td align="right">
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr]
</math>
&nbsp;
<math>
+ e^{im\varphi} \biggl\{ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] \biggr\}
</math>
 
<math>
+ e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi}  ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi}  ( \delta\rho )
+ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi}
</math>
<math>
+  (\rho_i  ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi}
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} +  ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi}
</math>
<math>
+ \rho_i \frac{\partial (\delta \dot z )}{\partial z} +  \delta \rho \frac{\partial \dot z_i }{\partial z} +
\dot z_i \frac{\partial (\delta \rho )}{\partial z} +  (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\}
</math>
  </td>
</tr>
 
</table>
</div>
 
<!--  
XXX
XXX
XXX
XXX      TABLE TO LINEARIZE CONTINUITY EQUATION  
XXX
XXX
XXX
-->
-->
<table border="1" cellpadding="5">
<table border="1" cellpadding="5">
Line 212: Line 268:
   <td align="center" colspan="3">
   <td align="center" colspan="3">
<math>
<math>
Q(\varpi, \phi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1
Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1
</math>
</math>
   </td>
   </td>
Line 225: Line 281:
   <td align="right">
   <td align="right">
<math>\frac{\partial\rho}{\partial t}</math>
<math>\frac{\partial\rho}{\partial t}</math>
  </td>
<td align="center">
<math>~~ \rightarrow ~~</math>
  </td>
  <td align="left">
<math>
\cancel{ \frac{\partial (\rho_i) }{\partial t} } + e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr]
</math>
  </td>
  <td align="center" colspan="2">
&nbsp;
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
   </td>
   </td>
  <td align="center">
  <td align="center">
Line 231: Line 304:
   <td align="left" bgcolor="lightblue">
   <td align="left" bgcolor="lightblue">
<math>
<math>
\cancel{ \frac{\partial (\rho_i) }{\partial t} } + e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr]
e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr]
</math>
</math>
   </td>
   </td>
Line 430: Line 503:
   <td align="left">
   <td align="left">
<math>
<math>
(\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot{z}_i} + e^{im\varphi} \delta\dot{z})}{\partial\varphi}  
(\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot{z}_i} + e^{im\varphi} \delta\dot{z})}{\partial z}  
+ ( {\dot{z}_i} +e^{im\varphi}  \delta\dot{z}) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varphi}   
+ ( {\dot{z}_i} +e^{im\varphi}  \delta\dot{z}) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial z}   
</math>
</math>
   </td>
   </td>
Line 448: Line 521:
   <td align="left">
   <td align="left">
<math>
<math>
(\rho_i + e^{im\varphi} \delta\rho) \cancel{ \frac{\partial ( {\dot{z}_i} )}{\partial\varphi} }  
(\rho_i + e^{im\varphi} \delta\rho) { \frac{\partial ( {\dot{z}_i} )}{\partial z} }  
+ im  e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{ \delta\rho })( \delta\dot{z})
+ e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{{ \delta\rho } } ) \frac{\partial ( \delta\dot{z})}{\partial z}
</math>
</math>


<math>
<math>
+ ( {\dot{z}_i} +e^{im\varphi}  \delta\dot{z}) \cancel{ \frac{\partial (\rho_i )}{\partial\varphi} }  
+ ( {\dot{z}_i} +e^{im\varphi}  \delta\dot{z}) \frac{\partial (\rho_i )}{\partial z}
+ im e^{im\varphi} ( {\dot{z}_i} +e^{im\varphi} \cancel{ \delta\dot{z} }) (\delta\rho)
+  e^{im\varphi} ( {\dot{z}_i} +e^{im\varphi} \cancel{ \delta\dot{z} } ) \frac{\partial (\delta\rho)}{\partial z}
</math>
</math>
   </td>
   </td>
Line 471: Line 544:
   <td align="left" bgcolor="lightblue">
   <td align="left" bgcolor="lightblue">
<math>
<math>
im  e^{im\varphi} \biggl[ \rho_i ( \delta\dot{z}) + \dot{z}_i (\delta\rho) \biggr]
\rho_i \frac{\partial \dot z_i }{\partial z} + \dot{z}_i \frac{\partial \rho_i}{\partial z}
+
e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} +
\dot z_i \frac{\partial (\delta \rho )}{\partial z} +  (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr]
</math>
</math>
   </td>
   </td>
Line 479: Line 555:
   <td align="left">
   <td align="left">
<math>
<math>
im  e^{im\varphi} \biggl[ \rho_i ( \delta\dot{z}) + \cancel{\dot{z}_i }(\delta\rho) \biggr]
\rho_i \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot{z}_i } \frac{\partial \rho_i}{\partial z}
</math>
 
<math>
+ e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \cancel{ \frac{\partial \dot z_i }{\partial z} } +
\cancel{ \dot z_i } \frac{\partial (\delta \rho )}{\partial z} +  (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr]
</math>
</math>
   </td>
   </td>
Line 499: Line 580:
   <td align="left" bgcolor="lightgreen">
   <td align="left" bgcolor="lightgreen">
<math>
<math>
im  e^{im\varphi} \biggl[ \rho_i ( \delta\dot{z}) \biggr]
e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\}
</math>
</math>
   </td>
   </td>
</tr>
</tr>


<tr>
  <td align="right">
Combining all terms:
  </td>
  <td align="center">
<math>~~~ \rightarrow ~~~</math>
  </td>
  <td align="left" bgcolor="lightblue">
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] = \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr]
</math>
&nbsp; &nbsp;
<math>
+ e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi}  ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi}  ( \delta\rho )
+ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi}
</math>
<math>
+  (\rho_i  ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi}
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} +  ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi}
</math>
<math>
+ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr]
</math>
<math>
+ \rho_i \frac{\partial (\delta \dot z )}{\partial z} +  \delta \rho \frac{\partial \dot z_i }{\partial z} +
\dot z_i \frac{\partial (\delta \rho )}{\partial z} +  (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\}
</math>
  </td>
  <td align="center" colspan="1">
<math>~~~ \rightarrow ~~~</math>
  </td>
  <td align="left" bgcolor="lightgreen">
<math>
+ e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z )  \biggr] \biggr\}
</math>
  </td>
</tr>


</table>
</table>
<!--  END CONTINUITY EQUATION TABLE -->
<!--   
XXX
XXX
XXX
XXX      END CONTINUITY EQUATION TABLE  
XXX
XXX
XXX
-->




<div align="center">
<span id="PGE:Euler:R">
<span id="PGE:Euler:R">
<font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font>
<font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font>

Latest revision as of 22:41, 17 March 2013

Equations Cast in Cylindrical Coordinates

Spatial Operators in Cylindrical Coordinates

<math> \nabla f </math>

=

<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi {\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

<math> \nabla^2 f </math>

=

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + {\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>

<math> (\vec{v}\cdot\nabla)f </math>

=

<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + {\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

<math> \nabla \cdot \vec{F} </math>

=

<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + {\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>

Vector Time-Derivatives in Cylindrical Coordinates

<math> \frac{d}{dt}\vec{F} </math>

=

<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

 

=

<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>

=

<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>

Governing Equations

Introducing the above expressions into the principal governing equations gives,

Equation of Continuity

<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>


Euler Equation

<math> {\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = - {\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_\varphi \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Eulerian Formulation

Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,


<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial f}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>

Hence,

Equation of Continuity

<math> \frac{\partial\rho}{\partial t} + \biggl[ \dot\varpi \frac{\partial \rho}{\partial\varpi} \biggr] + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \biggl[ \dot\varphi \frac{\partial \rho}{\partial\varphi} \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr] + \biggl[ \dot{z} \frac{\partial \rho}{\partial z} \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>

<math> \Rightarrow ~~~ \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>

Assuming that the initial (subscript i) configuration is axisymmetric and that, following perturbation, each physical parameter, <math>Q</math>, behaves according to the relation,

<math> Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 \, , </math>

the linearized form of the continuity equation becomes:

(This has been obtained by combining the expressions highlighted with a lightblue background color from the accompanying table.)

<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math>

<math>=</math>

<math> \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] + \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] </math>   <math> + e^{im\varphi} \biggl\{ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] \biggr\} </math>

<math> + e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} </math> <math> + \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} </math>

Linearize each term of the Continuity Equation assuming ...

<math> Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 </math>

<math> \mathrm{and} ~~~ \dot\varpi_i = \dot z_i = 0 </math>

<math>\frac{\partial\rho}{\partial t}</math>

<math>~~ \rightarrow ~~</math>

<math> \cancel{ \frac{\partial (\rho_i) }{\partial t} } + e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math>

<math>~~~ \rightarrow ~~~</math>

<math> e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math>

<math>\frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] = \frac{\rho \dot\varpi}{\varpi} + \rho\frac{\partial \dot\varpi}{\partial\varpi} + \dot\varpi \frac{\partial \rho}{\partial\varpi} </math>

<math>~~ \rightarrow ~~</math>

<math> \frac{ (\rho_i + e^{im\varphi} \delta\rho) ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi)}{\varpi} </math>

<math> + (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi)}{\partial\varpi} </math>

<math> + ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varpi} </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) \biggr] + e^{2im\varphi} \biggl[ \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} } \biggr] </math>

<math> + (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + e^{im\varphi} \biggl[ (\rho_i + e^{im\varphi} \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} \biggr] </math>

<math> + ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + e^{im\varphi}\biggl[ ( {\dot\varpi_i} + e^{im\varphi} \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} + \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} </math>

<math> + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math>

<math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] </math>

<math>~~~~ \rightarrow ~~~~</math>

<math> \cancel{ \frac{ \rho_i \dot\varpi_i}{\varpi} } + \cancel{ \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} } + \cancel{ \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} } </math>

<math> + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \cancel{ \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) } + \cancel{ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} } </math>

<math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + \cancel{ ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} } \biggr] </math>

 

<math>~~~~ \rightarrow ~~~~</math>

<math> + e^{im\varphi} \biggl\{ \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \rho_i (\delta \dot\varpi) \biggr] \biggr\} </math>

<math>\frac{1}{\varpi} \frac{\partial}{\partial\varphi} \biggl[ \rho \varpi \dot\varphi \biggr] = \frac{\rho}{\varpi} \frac{\partial (\varpi \dot\varphi) }{\partial\varphi} + \dot\varphi \frac{\partial \rho}{\partial\varphi} </math>

<math>~~ \rightarrow ~~</math>

<math> (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot\varphi_i} + e^{im\varphi} \delta\dot\varphi)}{\partial\varphi} + ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varphi} </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> (\rho_i + e^{im\varphi} \delta\rho) \cancel{ \frac{\partial ( {\dot\varphi_i} )}{\partial\varphi} } + im e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{ \delta\rho })( \delta\dot\varphi) </math>

<math> + ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \cancel{ \frac{\partial (\rho_i )}{\partial\varphi} } + im e^{im\varphi} ( {\dot\varphi_i} +e^{im\varphi} \cancel{ \delta\dot\varphi }) (\delta\rho) </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math>

<math>~~~ \rightarrow ~~~</math>

<math> im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math>

<math>\frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr]</math>

<math>~~ \rightarrow ~~</math>

<math> (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot{z}_i} + e^{im\varphi} \delta\dot{z})}{\partial z} + ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial z} </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> (\rho_i + e^{im\varphi} \delta\rho) { \frac{\partial ( {\dot{z}_i} )}{\partial z} } + e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{{ \delta\rho } } ) \frac{\partial ( \delta\dot{z})}{\partial z} </math>

<math> + ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i )}{\partial z} + e^{im\varphi} ( {\dot{z}_i} +e^{im\varphi} \cancel{ \delta\dot{z} } ) \frac{\partial (\delta\rho)}{\partial z} </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> \rho_i \frac{\partial \dot z_i }{\partial z} + \dot{z}_i \frac{\partial \rho_i}{\partial z} + e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] </math>

<math>~~~ \rightarrow ~~~</math>

<math> \rho_i \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot{z}_i } \frac{\partial \rho_i}{\partial z} </math>

<math> + e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot z_i } \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] </math>

 

 

 

<math>~~~ \rightarrow ~~~</math>

<math> e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} </math>

Combining all terms:

<math>~~~ \rightarrow ~~~</math>

<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] = \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] + \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] </math>     <math> + e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math>

<math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} </math>

<math> + im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math>

<math> + \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} </math>

<math>~~~ \rightarrow ~~~</math>

<math> + e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} </math>


<math>\varpi</math> Component of Euler Equation

<math> \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>

<math> \rightarrow ~~~ \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>


<math>\varphi</math> Component of Euler Equation

<math> \frac{d (\varpi\dot\varphi) }{dt} + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>

<math> \rightarrow ~~~ \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>


<math>z</math> Component of Euler Equation

<math> \frac{d \dot{z} }{dt} = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>

<math> \rightarrow ~~~ \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation