Difference between revisions of "User:Tohline/Cylindrical 3D"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Eulerian Formulation: Establish linearization table for continuity equation)
(→‎Eulerian Formulation: Improve and finish linearization of continuity equation)
Line 200: Line 200:
</math><br />
</math><br />


<!--
TABLE TO LINEARIZE CONTINUITY EQUATION
-->
<table border="1" cellpadding="5">
<table border="1" cellpadding="5">
<tr>
<tr>
   <td align="center" colspan="3">
   <td align="center" colspan="5">
<b>Linearize the Continuity Equation assuming</b>
<b>Linearize each term of the <font color="darkblue">Continuity Equation</font> assuming ...</b>
   </td>
   </td>
</tr>
</tr>
Line 209: Line 212:
   <td align="center" colspan="3">
   <td align="center" colspan="3">
<math>
<math>
Q(\varpi, \phi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}]; \delta q/q_i \ll 1; \dot\varpi_i = \dot z_i = 0</math>
Q(\varpi, \phi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1
</math>
  </td>
  <td align="center" colspan="2">
<math>
\mathrm{and} ~~~  \dot\varpi_i = \dot z_i = 0
</math>
   </td>
   </td>
</tr>
</tr>
Line 222: Line 231:
   <td align="left">
   <td align="left">
<math>\frac{\partial (\delta\rho) }{\partial t}</math>
<math>\frac{\partial (\delta\rho) }{\partial t}</math>
  </td>
  <td align="center" colspan="2">
&nbsp;
   </td>
   </td>
</tr>
</tr>
Line 236: Line 248:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{ (\rho_i + \delta\rho) ( \cancel{\dot\varpi_i} + \delta\dot\varpi)}{\varpi}  
\frac{ (\rho_i + \delta\rho) ( {\dot\varpi_i} + \delta\dot\varpi)}{\varpi}  
+ (\rho_i + \delta\rho) \frac{\partial ( \cancel{\dot\varpi_i} + \delta\dot\varpi)}{\partial\varpi}  
+ (\rho_i + \delta\rho) \frac{\partial ( {\dot\varpi_i} + \delta\dot\varpi)}{\partial\varpi}  
+ ( \cancel{\dot\varpi_i} + \delta\dot\varpi) \frac{\partial (\rho_i + \delta\rho)}{\partial\varpi}  
+ ( {\dot\varpi_i} + \delta\dot\varpi) \frac{\partial (\rho_i + \delta\rho)}{\partial\varpi}  
</math>
</math>
   </td>
   </td>
  <td align="center" colspan="2">
&nbsp;
  </td>
</tr>
</tr>


Line 252: Line 267:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{ \rho_i }{\varpi}  ( \delta\dot\varpi ) + \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} }  
\frac{ \rho_i \dot\varpi_i}{\varpi}  + \frac{ \rho_i }{\varpi}  ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi}  ( \delta\rho ) + \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} }  
+ (\rho_i) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + \cancel {(\delta\rho) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} }
+ (\rho_i + \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + (\rho_i + \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi}
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + \cancel {( \delta\dot\varpi) \frac{\partial (\delta\rho)}{\partial\varpi} }  
</math>
<math>
+ ( {\dot\varpi_i} + \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} + \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi}
</math>
  </td>
  <td align="center" colspan="1">
<math>~~~~ \rightarrow ~~~~</math>
  </td>
  <td align="left">
<math>
\frac{ \rho_i \dot\varpi_i}{\varpi}  + \frac{ \rho_i }{\varpi}  ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi}  ( \delta\rho ) + \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} }
+ (\rho_i + \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + (\rho_i + \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi}
</math>
<math>
+ ( {\dot\varpi_i} + \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} + \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi}  
</math>
</math>
   </td>
   </td>
Line 260: Line 291:


</table>
</table>
<!--  END CONTINUITY EQUATION TABLE -->





Revision as of 18:50, 10 March 2013

Equations Cast in Cylindrical Coordinates

Spatial Operators in Cylindrical Coordinates

<math> \nabla f </math>

=

<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi {\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>

<math> \nabla^2 f </math>

=

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + {\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>

<math> (\vec{v}\cdot\nabla)f </math>

=

<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + {\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>

<math> \nabla \cdot \vec{F} </math>

=

<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + {\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>

Vector Time-Derivatives in Cylindrical Coordinates

<math> \frac{d}{dt}\vec{F} </math>

=

<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>

 

=

<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>

<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>

=

<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>

Governing Equations

Introducing the above expressions into the principal governing equations gives,

Equation of Continuity

<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>


Euler Equation

<math> {\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = - {\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_\varphi \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Eulerian Formulation

Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,


<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial f}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>

Hence,

Equation of Continuity

<math> \frac{\partial\rho}{\partial t} + \biggl[ \dot\varpi \frac{\partial \rho}{\partial\varpi} \biggr] + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \biggl[ \dot\varphi \frac{\partial \rho}{\partial\varphi} \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr] + \biggl[ \dot{z} \frac{\partial \rho}{\partial z} \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>

<math> \Rightarrow ~~~ \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>

Linearize each term of the Continuity Equation assuming ...

<math> Q(\varpi, \phi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 </math>

<math> \mathrm{and} ~~~ \dot\varpi_i = \dot z_i = 0 </math>

<math>\frac{\partial\rho}{\partial t}</math>

<math>~~ \rightarrow ~~</math>

<math>\frac{\partial (\delta\rho) }{\partial t}</math>

 

<math>\frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] = \frac{\rho \dot\varpi}{\varpi} + \rho\frac{\partial \dot\varpi}{\partial\varpi} + \dot\varpi \frac{\partial \rho}{\partial\varpi} </math>

<math>~~ \rightarrow ~~</math>

<math> \frac{ (\rho_i + \delta\rho) ( {\dot\varpi_i} + \delta\dot\varpi)}{\varpi} + (\rho_i + \delta\rho) \frac{\partial ( {\dot\varpi_i} + \delta\dot\varpi)}{\partial\varpi} + ( {\dot\varpi_i} + \delta\dot\varpi) \frac{\partial (\rho_i + \delta\rho)}{\partial\varpi} </math>

 

 

<math>~~ \rightarrow ~~</math>

<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} } + (\rho_i + \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + (\rho_i + \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} </math>

<math> + ( {\dot\varpi_i} + \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} + \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi} </math>

<math>~~~~ \rightarrow ~~~~</math>

<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} } + (\rho_i + \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + (\rho_i + \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} </math>

<math> + ( {\dot\varpi_i} + \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} + \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi} </math>


<math>\varpi</math> Component of Euler Equation

<math> \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>

<math> \rightarrow ~~~ \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi} </math>


<math>\varphi</math> Component of Euler Equation

<math> \frac{d (\varpi\dot\varphi) }{dt} + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>

<math> \rightarrow ~~~ \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi = - \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr] </math>


<math>z</math> Component of Euler Equation

<math> \frac{d \dot{z} }{dt} = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>

<math> \rightarrow ~~~ \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z} </math>


See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation