VisTrails Home

User:Tohline/AxisymmetricConfigurations/Storyline

From VisTrailsWiki

(Difference between revisions)
Jump to: navigation, search
(Storyline)
(Storyline)
Line 21: Line 21:
Once you have learned how to construct spherically symmetric, equilibrium self-gravitating configurations from gases that obey a variety of different equations of state, it is natural to ask how those structures will be modified if they are rotating.  You might naturally ask, as well, how techniques that you have learned to use to examine the stability of each spherically symmetric, equilibrium configuration — principally, linear stability analyses and free-energy analyses — might be extended to permit you to examine the stability of rotating equilibrium structures.   
Once you have learned how to construct spherically symmetric, equilibrium self-gravitating configurations from gases that obey a variety of different equations of state, it is natural to ask how those structures will be modified if they are rotating.  You might naturally ask, as well, how techniques that you have learned to use to examine the stability of each spherically symmetric, equilibrium configuration — principally, linear stability analyses and free-energy analyses — might be extended to permit you to examine the stability of rotating equilibrium structures.   
-
For more than 250 years the astrophysics (and mathematics) community has understood what set of equations must be solved simultaneously in order to
+
For more than 250 years the astrophysics (and mathematics) community has understood what set of equations must be solved simultaneously in order to build equilibrium models of rotating, self-gravitating gases.  The first — and still extraordinarily relevant — publication was the book by [[User:Tohline/Apps/MaclaurinSpheroids/GoogleBooks#Excerpts_from_A_Treatise_of_Fluxions|Colin Maclaurin (1742) titled, ''A Treatise of Fluxions'']].
=See Also=
=See Also=

Revision as of 19:28, 5 July 2019


Contents

(Initially) Axisymmetric Configurations

"As a practical matter, discussions of the effect of rotation on self-gravitating fluid masses divide into two categories: the structure of steady-state configurations, and the oscillations and the stability of these configurations."

— Drawn from N. R. Lebovitz (1967), ARAA, 5, 465

We add a third category, namely, the nonlinear dynamical evolution of systems that are revealed via stability analyses to be unstable.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Storyline

Once you have learned how to construct spherically symmetric, equilibrium self-gravitating configurations from gases that obey a variety of different equations of state, it is natural to ask how those structures will be modified if they are rotating. You might naturally ask, as well, how techniques that you have learned to use to examine the stability of each spherically symmetric, equilibrium configuration — principally, linear stability analyses and free-energy analyses — might be extended to permit you to examine the stability of rotating equilibrium structures.

For more than 250 years the astrophysics (and mathematics) community has understood what set of equations must be solved simultaneously in order to build equilibrium models of rotating, self-gravitating gases. The first — and still extraordinarily relevant — publication was the book by Colin Maclaurin (1742) titled, A Treatise of Fluxions.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2019 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Context: | PGE | SR |
Appendices: | Equations | Variables | References | Binary Polytropes | Ramblings | Images | Images (2016 Layout) | ADS |

Personal tools