Difference between revisions of "User:Tohline/AxisymmetricConfigurations/HSCF"

From VistrailsWiki
Jump to navigation Jump to search
Line 28: Line 28:
   <li>On your chosen computational lattice &#8212; for example, on a cylindrical-coordinate mesh &#8212; '''identify two boundary points''', A and B, that will lie on the surface of your equilibrium configuration.  These two points should remain fixed in space during the HSCF iteration cycle and ultimately will confine the volume and define the geometry of the derived equilibrium object.  Note that, by definition, the enthalpy at these two points is, <math>~H_A = H_B = H_\mathrm{surface}</math>.</li>
   <li>On your chosen computational lattice &#8212; for example, on a cylindrical-coordinate mesh &#8212; '''identify two boundary points''', A and B, that will lie on the surface of your equilibrium configuration.  These two points should remain fixed in space during the HSCF iteration cycle and ultimately will confine the volume and define the geometry of the derived equilibrium object.  Note that, by definition, the enthalpy at these two points is, <math>~H_A = H_B = H_\mathrm{surface}</math>.</li>
   <li>Throughout the volume of your computational lattice, ''' ''guess'' a trial distribution of the mass density,''' <math>~\rho(\varpi,z)</math>, such that no material falls outside a volume defined by the two boundary points, A and B, that were identified in Step #3.  Usually an initially uniform density distribution will suffice to start the SCF iteration.</li>
   <li>Throughout the volume of your computational lattice, ''' ''guess'' a trial distribution of the mass density,''' <math>~\rho(\varpi,z)</math>, such that no material falls outside a volume defined by the two boundary points, A and B, that were identified in Step #3.  Usually an initially uniform density distribution will suffice to start the SCF iteration.</li>
   <li>Via ''some'' accurate numerical algorithm, '''solve the Poisson equation''' to determine the gravitational potential, <math>~\Phi(\varpi,z)</math>, throughout the computation lattice that corresponds to the trial mass-density distribution that was specified in Step #4 (or in Step #9).</li>
   <li>Via ''some'' accurate numerical algorithm, '''solve the Poisson equation''' to determine the gravitational potential, <math>~\Phi(\varpi,z)</math>, throughout the computational lattice corresponding to the trial mass-density distribution that was specified in Step #4 (or in Step #9).</li>
  <li>From the gravitational potential determined in Step #5, '''identify the values of <math>~\Phi_A</math> and <math>~\Phi_B</math>''' at the two boundary points that were selected in Step #3.</li>
  <li>From the "known" values of the enthalpy (Step #3) and the gravitational potential (Step #6) at the two selected surface boundary points A and B, '''determine the values of the constants, <math>~C_0</math> and <math>~h_0</math>,''' that appear in the algebraic equation that defines hydrostatic equilibrium.</li>
  <li>From the most recently determined values of the gravitational potential, <math>~\Phi(\varpi,z)</math> (Step #5), and the values of the two constants, <math>~C_0</math> and <math>~h_0</math> just determined (Step #7), '''determine the enthalpy distribution throughout the computational lattice.'''</li>
  <li>From <math>~H(\varpi,z)</math> and the selected barotropic equation of state (Step #1), '''calculate an "improved guess" of the density distribution,''' <math>~\rho(\varpi,z)</math>, throughout the computational lattice.</li>
  <li>'''Has the model converged to a satisfactory equilibrium solution?'''  (Usually a satisfactory solution has been achieved when the derived model parameters &#8212; for example, the values of <math>~C_0</math> and <math>~h_0</math> &#8212; change very little between successive iterations and the viral error is sufficiently small.)
  <ul>
<li>If the answer is, "NO": &nbsp; Repeat steps 5 through 10.</li>
<li>If the answer is, "YES": &nbsp; Stop iteration.</li>
  </ul>
  </li>
</ol>
</ol>



Revision as of 22:58, 22 March 2018

Hachisu Self-Consistent-Field Technique

Izumi Hachisu

I. Hachisu

In 1986, Izumi Hachisu published two papers in The Astrophysical Journal Supplement Series (vol. 61, pp. 479-507, and vol. 62, pp. 461-499) describing "A Versatile Method for Obtaining Structures of Rapidly Rotating Stars." (Henceforth, we will refer to this method as the Hachisu Self-Consistent-Field, or HSCF, technique.) We have found the HSCF technique to be an extremely powerful tool for constructing equilibrium configurations of self-gravitating fluid systems under a wide variety of different circumstances. This chapter has been built upon an (ca. 1999) outline of the HSCF technique that appeared in our original version of this HyperText Book (H_Book). The photo of Professor Izumi Hachisu shown here, on the left, dates from the mid-1980s — about the time he developed this remarkably useful numerical technique; a more recent photo can be found on the web page associated with Professor Hachisu's current faculty appointment at the University of Tokyo, Komaba.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Constructing Two-Dimensional, Axisymmetric Structures

As has been explained in an accompanying discussion, our objective is to solve an algebraic expression for hydrostatic balance,

<math>~H + \Phi + \Psi = C_\mathrm{B}</math> ,

in conjunction with the Poisson equation in a form that is appropriate for two-dimensional, axisymmetric systems, namely,

<math>~ \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Steps to Follow

  1. Choose a particular barotropic equation of state.   More specifically, functionally define the density-enthalpy relationship, <math>~\rho(H)</math>, and identify what value, <math>~H_\mathrm{surface}</math>, the enthalpy will have at the surface of your configuration. For example, if a polytropic equation of state is adopted, <math>~H_\mathrm{surface} = 0</math> is a physically reasonable prescription.
  2. Choosing from, for example, a list of astrophysically relevant simple rotation profiles, specify the corresponding functional form of the centrifugal potential, <math>~\Psi(\varpi)</math>, that will define the radial distribution of specific angular momentum in your equilibrium configuration.
  3. On your chosen computational lattice — for example, on a cylindrical-coordinate mesh — identify two boundary points, A and B, that will lie on the surface of your equilibrium configuration. These two points should remain fixed in space during the HSCF iteration cycle and ultimately will confine the volume and define the geometry of the derived equilibrium object. Note that, by definition, the enthalpy at these two points is, <math>~H_A = H_B = H_\mathrm{surface}</math>.
  4. Throughout the volume of your computational lattice, guess a trial distribution of the mass density, <math>~\rho(\varpi,z)</math>, such that no material falls outside a volume defined by the two boundary points, A and B, that were identified in Step #3. Usually an initially uniform density distribution will suffice to start the SCF iteration.
  5. Via some accurate numerical algorithm, solve the Poisson equation to determine the gravitational potential, <math>~\Phi(\varpi,z)</math>, throughout the computational lattice corresponding to the trial mass-density distribution that was specified in Step #4 (or in Step #9).
  6. From the gravitational potential determined in Step #5, identify the values of <math>~\Phi_A</math> and <math>~\Phi_B</math> at the two boundary points that were selected in Step #3.
  7. From the "known" values of the enthalpy (Step #3) and the gravitational potential (Step #6) at the two selected surface boundary points A and B, determine the values of the constants, <math>~C_0</math> and <math>~h_0</math>, that appear in the algebraic equation that defines hydrostatic equilibrium.
  8. From the most recently determined values of the gravitational potential, <math>~\Phi(\varpi,z)</math> (Step #5), and the values of the two constants, <math>~C_0</math> and <math>~h_0</math> just determined (Step #7), determine the enthalpy distribution throughout the computational lattice.
  9. From <math>~H(\varpi,z)</math> and the selected barotropic equation of state (Step #1), calculate an "improved guess" of the density distribution, <math>~\rho(\varpi,z)</math>, throughout the computational lattice.
  10. Has the model converged to a satisfactory equilibrium solution? (Usually a satisfactory solution has been achieved when the derived model parameters — for example, the values of <math>~C_0</math> and <math>~h_0</math> — change very little between successive iterations and the viral error is sufficiently small.)
    • If the answer is, "NO":   Repeat steps 5 through 10.
    • If the answer is, "YES":   Stop iteration.

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation