Difference between revisions of "User:Tohline/Apps/MaclaurinSpheroids"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Apply Boundary Conditions: Add tag to equilibrium frequency expression)
(3 intermediate revisions by the same user not shown)
Line 5: Line 5:
{{LSU_HBook_header}}
{{LSU_HBook_header}}
<!-- [[Image:LSU_Structure_still.gif|74px|left]] -->
<!-- [[Image:LSU_Structure_still.gif|74px|left]] -->
There is no particular reason why one should guess ahead of time that the equilibrium properties of ''any'' rotating, self-gravitating configuration should be describable in terms of analytic functions.  As luck would have it, however, the gravitational potential at the surface of and inside an homogeneous spheroid is expressible analytically.  (The potential is constant on concentric spheroidal surfaces that generally have a different axis ratio from the spheroidal mass distribution.)  Furthermore, the gradient of the gravitational potential is separable in cylindrical coordinates, proving to be a simple ''linear'' function of both <math>\varpi</math> and <math>z</math>.
 
There is no particular reason why one should guess ahead of time that the equilibrium properties of ''any'' rotating, self-gravitating configuration should be describable in terms of analytic functions.  As luck would have it, however, the gravitational potential at the surface of and inside an homogeneous spheroid is expressible analytically.  (The potential is constant on concentric spheroidal surfaces that generally have a different axis ratio from the spheroidal mass distribution.)  Furthermore, the gradient of the gravitational potential is separable in cylindrical coordinates, proving to be a simple ''linear'' function of both <math>\varpi</math> and <math>~z</math>.


If the spheroid is uniformly rotating, this behavior conspires nicely with the behavior of the [[User:Tohline/PGE/RotatingFrame#Centrifugal_and_Coriolis_Accelerations|centrifugal acceleration]] &#8212; which also will be a linear function of <math>\varpi</math> &#8212; to permit an analytic (and integrable) prescription of the pressure gradient.  Not surprisingly, it resembles the functional form of the pressure gradient that is required to balance the gravitational force in [[User:Tohline/SSC/Structure/UniformDensity|uniform-density spheres]].
If the spheroid is uniformly rotating, this behavior conspires nicely with the behavior of the [[User:Tohline/PGE/RotatingFrame#Centrifugal_and_Coriolis_Accelerations|centrifugal acceleration]] &#8212; which also will be a linear function of <math>\varpi</math> &#8212; to permit an analytic (and integrable) prescription of the pressure gradient.  Not surprisingly, it resembles the functional form of the pressure gradient that is required to balance the gravitational force in [[User:Tohline/SSC/Structure/UniformDensity|uniform-density spheres]].


As a consequence of this good fortune, the equilibrium structure of a uniformly rotating, uniform-density (n = 0), axisymmetric configuration can be shown to be precisely an oblate spheroid whose internal properties are describable in terms of analytic expressions.  These expressions were first derived by Colin Maclaurin (1742) in ''A Treatise of Fluxions,'' and have been enumerated in many subsequent publications (e.g., Tassoul 1978; Chandrasekhar 1987).  It should be appreciated that both [https://books.google.com/books?id=dCAOAAAAQAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Volume I] and [https://books.google.com/books?id=xfQ7AQAAMAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Volume II] of Maclaurin's (1742) ''Treatise'' can now be accessed online via Google Books.  Selected excerpts from these two books are shown [[User:Tohline/Apps/MaclaurinSpheroids/GoogleBooks|in an accompanying discussion]].
As a consequence of this good fortune, the equilibrium structure of a uniformly rotating, uniform-density <math>~(n = 0)</math>, axisymmetric configuration can be shown to be precisely an oblate spheroid whose internal properties are describable in terms of analytic expressions.  As we show [[User:Tohline/Apps/MaclaurinSpheroids/GoogleBooks#Interpreting_Maclaurin.27s_Key_Concluding_Theorem|in an accompanying discussion]], the angular velocity that is required to keep a self-gravitating spheroid of a specified eccentricity in equilibrium can be obtained from a theorem &#8212; we will refer to it as [[User:Tohline/Apps/MaclaurinSpheroids/GoogleBooks#MaclaurinTheorem|Maclaurin's Theorem]] &#8212; that was derived from purely geometric arguments over 270 years ago by Colin Maclaurin (1742) in ''A Treatise of Fluxions.'' This result has been enumerated in many subsequent publications (e.g., Tassoul 1978; Chandrasekhar 1987).  It should be appreciated that both [https://books.google.com/books?id=dCAOAAAAQAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Volume I] and [https://books.google.com/books?id=xfQ7AQAAMAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false Volume II] of Maclaurin's (1742) ''Treatise'' can now be accessed online via Google Books.  Selected excerpts from these two volumes are shown [[User:Tohline/Apps/MaclaurinSpheroids/GoogleBooks#Excerpts_from_A_Treatise_of_Fluxions|in our accompanying discussion]].


==Properties of Uniform-Density Spheroids==
==Properties of Uniform-Density Spheroids==
===Surface Definition===
===Surface Definition===


Let <math>a_1</math> be the equatorial radius and <math>a_3</math> the polar radius of a uniform-density object whose surface is defined precisely by an oblate spheroid.  The degree of flattening of the object may be parameterized in terms of the axis ratio <math>a_3/a_1</math>, or in terms of the object's eccentricity,
Let <math>~a_1</math> be the equatorial radius and <math>~a_3</math> the polar radius of a uniform-density object whose surface is defined precisely by an oblate spheroid.  The degree of flattening of the object may be parameterized in terms of the axis ratio <math>~a_3/a_1</math>, or in terms of the object's eccentricity,


<div align="center">
<div align="center">
Line 22: Line 23:
</div>
</div>


(For an ''oblate'' spheroid, <math>a_3 \leq a_1</math>; hence, the eccentricity is restricted to the range <math>0 \leq e \leq 1</math>.)  The meridional cross-section of such a spheroid is an ellipse with the same eccentricity.  The foci of this ellipse lie in the equatorial plane of the spheroid at a distance <math>\varpi = ea_1</math> from the minor (<math>z</math>) axis.
(For an ''oblate'' spheroid, <math>~a_3 \leq a_1</math>; hence, the eccentricity is restricted to the range <math>~0 \leq e \leq 1</math>.)  The meridional cross-section of such a spheroid is an ellipse with the same eccentricity.  The foci of this ellipse lie in the equatorial plane of the spheroid at a distance <math>~\varpi = ea_1</math> from the minor <math>~(z)</math> axis.


===Mean Radius===
===Mean Radius===
Line 29: Line 30:
<div align="center">
<div align="center">
<math>
<math>
a_\mathrm{mean} \equiv \biggl[a_1^2 a_3 \biggr]^{1/3} = a_1 (1 - e^2)^{1/6} ,
~a_\mathrm{mean} \equiv \biggl[a_1^2 a_3 \biggr]^{1/3} = a_1 (1 - e^2)^{1/6} ,
</math>  
</math>  
</div>
</div>
which is equivalent to the radius of a sphere in the limit <math>a_3 = a_1</math> (<math>e=0</math>).
which is equivalent to the radius of a sphere in the limit <math>~a_3 = a_1</math> <math>~(e=0)</math>.


===Mass===
===Mass===
Line 63: Line 64:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2}  \biggr](1-e^2)^{1/2}
\frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2}  \biggr](1-e^2)^{1/2} \, ;
</math>
</math>
   </td>
   </td>
Line 80: Line 81:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2}
\frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2} \, ;
</math>
</math>
   </td>
   </td>
Line 97: Line 98:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
~2A_1 + A_3(1-e^2) = 2 (1-e^2)^{1/2} \biggl[ \frac{\sin^{-1}e}{e}\biggr]
~2A_1 + A_3(1-e^2) = 2 (1-e^2)^{1/2} \biggl[ \frac{\sin^{-1}e}{e}\biggr] \, .
</math>
</math>
   </td>
   </td>
Line 167: Line 168:
To obtain the equilibrium structure of Maclaurin spheroids, we will adopt the [[User:Tohline/AxisymmetricConfigurations/SolutionStrategies#Technique|technique outlined earlier for determining the structure of axisymmetric configurations]].  Specifically, the algebraic expression,
To obtain the equilibrium structure of Maclaurin spheroids, we will adopt the [[User:Tohline/AxisymmetricConfigurations/SolutionStrategies#Technique|technique outlined earlier for determining the structure of axisymmetric configurations]].  Specifically, the algebraic expression,
<div align="center">
<div align="center">
<math>H + \Phi_\mathrm{eff} = C_\mathrm{B}</math> ,
<math>~H + \Phi_\mathrm{eff} = C_\mathrm{B}</math> ,
</div>
</div>
must be solved in conjunction with the [[User:Tohline/AxisymmetricConfigurations/PGE#Governing_Equations|Poisson equation written in cylindrical coordinates for axisymmetric configurations]], namely,
must be solved in conjunction with the [[User:Tohline/AxisymmetricConfigurations/PGE#Governing_Equations|Poisson equation written in cylindrical coordinates for axisymmetric configurations]], namely,
<div align="center">
<div align="center">
<math>
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .  
~\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .  
</math>
</math>
</div>
</div>


===Expression for Effective Potential===
===Expression for Effective Potential===
For any value of the eccentricity, <math>e</math>, the [[User:Tohline/Apps/MaclaurinSpheroids#Gravitational_Potential|above expression for the gravitational potential]] satisfies this two-dimensional Poisson equation.  Furthermore, an algebraic expression defining the centrifugal potential inside a uniformly rotating configuration can be drawn from our accompanying table that summarizes the properties of various [[User:Tohline/AxisymmetricConfigurations/SolutionStrategies#SRPtable|simple rotation profiles]].  Together, these relations give us the relevant expression for the effective potential, namely,
For any value of the eccentricity, <math>~e</math>, the [[User:Tohline/Apps/MaclaurinSpheroids#Gravitational_Potential|above expression for the gravitational potential]] satisfies this two-dimensional Poisson equation.  Furthermore, an algebraic expression defining the centrifugal potential inside a uniformly rotating configuration can be drawn from our accompanying table that summarizes the properties of various [[User:Tohline/AxisymmetricConfigurations/SolutionStrategies#SRPtable|simple rotation profiles]].  Together, these relations give us the relevant expression for the effective potential, namely,
<div align="center">
<div align="center">
<math>
<math>
Line 190: Line 191:
</math>
</math>
</div>  
</div>  
This expression contains two constants, <math>C_\mathrm{B}</math> and <math>\omega_0</math>, that can be determined from relevant boundary conditions.
This expression contains two constants, <math>~C_\mathrm{B}</math> and <math>~\omega_0</math>, that can be determined from relevant boundary conditions.


===Apply Boundary Conditions===
===Apply Boundary Conditions===
The enthalpy should go to zero everywhere on the surface of the spheroid.  By pinning the surface down at two points and setting <math>H=0</math> at both of these locations, we can determine the two unknown constants in the above expression.  We choose to pin down the edge of the configuration in the equatorial plane &#8212; ''i.e.'', at <math>(\varpi,z) = (a_1,0)</math> &#8212;  and along the symmetry axis at the pole &#8212; ''i.e.'', at <math>(\varpi,z) = (0,a_3)</math>. From the boundary condition at the pole, we derive the Bernoulli constant, specifically,
The enthalpy should go to zero everywhere on the surface of the spheroid.  By pinning the surface down at two points and setting <math>~H=0</math> at both of these locations, we can determine the two unknown constants in the above expression.  We choose to pin down the edge of the configuration in the equatorial plane &#8212; ''i.e.'', at <math>(\varpi,z) = (a_1,0)</math> &#8212;  and along the symmetry axis at the pole &#8212; ''i.e.'', at <math>(\varpi,z) = (0,a_3)</math>. From the boundary condition at the pole, we derive the Bernoulli constant, specifically,
<div align="center">
<div align="center">
<math>
<math>
Line 211: Line 212:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
Line 229: Line 230:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
2\pi G \rho \biggl[ A_1 - A_3 (1-e^2) \biggr]  
2\pi G \rho \biggl[ A_1 - A_3 (1-e^2) \biggr] \, .
</math>
</math>
   </td>
   </td>
Line 251: Line 252:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
Line 262: Line 263:
</table>
</table>


For a uniform-density, <math>n = 0</math> polytropic configuration, the pressure is related to the enthalpy via the expression, <math>P = H\rho</math>.  Hence, we conclude that,
We know from our [[User:Tohline/SR#Barotropic_Structure|separate discussion of supplemental, barotropic equations of state]] that, for a uniform-density, <math>~n = 0</math> polytropic configuration, the pressure is related to the enthalpy via the expression, <math>~P = H\rho</math>.  Hence, we conclude that,
<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
Line 272: Line 273:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
Line 291: Line 292:
   <td align="center">
   <td align="center">
<math>
<math>
=
~=
</math>
</math>
   </td>
   </td>
Line 304: Line 305:
where,
where,
<div align="center">
<div align="center">
<math>
<math>~
P_0 \equiv \frac{2}{3}\pi G \rho^2 a_\mathrm{mean}^2 = \frac{2}{3}\pi G \rho^2 a_1^2 (1-e^2)^{1/3} .
P_0 \equiv \frac{2}{3}\pi G \rho^2 a_\mathrm{mean}^2 = \frac{2}{3}\pi G \rho^2 a_1^2 (1-e^2)^{1/3} .
</math><br />
</math><br />


[ [[User:Tohline/Appendix/References#T78|T78]], <font color="#00CC00"> &sect;4.5, Eq. (51)</font><sup>1</sup> ]<br />
[ [[User:Tohline/Appendix/References#T78|T78]], <font color="#00CC00"> &sect;4.5, Eq. (51)</font><sup>1</sup> ]<br />
</div>
<font color="darkblue">
==Summary==
</font>
From the above derivations, we can describe the properties of a spherical {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytrope as follows:
* <font color="red">Mass</font>: 
: Given the density, <math>\rho_c</math>, and the radius, <math>R</math>, of the configuration, the total mass is,
<div align="center">
<math>M = \frac{4}{\pi} \rho_c R^3 </math> ;
</div>
: and, expressed as a function of <math>M</math>, the mass that lies interior to radius <math>r</math> is,
<div align="center">
<math>\frac{M_r}{M} = \frac{1}{\pi} \biggl[ \sin\biggl(\frac{\pi r}{R} \biggr) - \biggl(\frac{\pi r}{R} \biggr)\cos\biggl(\frac{\pi r}{R} \biggr) \biggr]</math> .
</div>
* <font color="red">Pressure</font>:
: Given values for the pair of model parameters <math>( \rho_c , R )</math>, or <math>( M , R )</math>, or <math>( \rho_c , M )</math>, the central pressure of the configuration is,
<div align="center">
<math>P_c = \frac{2 G}{\pi} \rho_c^2 R^2 = \frac{\pi G}{8}\biggl( \frac{M^2}{R^4} \biggr) = \biggl[ \frac{1}{2\pi} G^3 \rho_c^4 M^2 \biggr]^{1/3}</math> ;
</div>
: and, expressed in terms of the central pressure <math>P_c</math>, the variation with radius of the pressure is,
<div align="center">
<math>P(r)= P_c \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr]^2</math> .
</div>
* <font color="red">Enthalpy</font>:
: Throughout the configuration, the enthalpy is given by the relation,
<div align="center">
<math>H(r) = \frac{2 P(r)}{ \rho(r)} = \frac{GM}{R} \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr]</math> .
</div>
* <font color="red">Gravitational potential</font>:
: Throughout the configuration &#8212; that is, for all <math>r \leq R</math> &#8212; the gravitational potential is given by the relation,
<div align="center">
<math>\Phi_\mathrm{surf} - \Phi(r) = H(r) = \frac{GM}{R} \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr] </math> .
</div>
: Outside of this spherical configuration&#8212; that is, for all <math>r \geq R</math> &#8212;  the potential should behave like a point mass potential, that is,
<div align="center">
<math>\Phi(r) = - \frac{GM}{r} </math> .
</div>
: Matching these two expressions at the surface of the configuration, that is, setting <math>\Phi_\mathrm{surf} = - GM/R</math>, we have what is generally considered the properly normalized prescription for the gravitational potential inside a spherically symmetric, {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytropic configuration:
<div align="center">
<math>\Phi(r) = - \frac{G M}{R} \biggl\{ 1 + \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr] \biggr\} </math> .
</div>
* <font color="red">Mass-Radius relationship</font>:
: We see that, for a given value of <math>\rho_c</math>, the relationship between the configuration's total mass and radius is,
<div align="center">
<math>M \propto R^3  ~~~~~\mathrm{or}~~~~~R \propto M^{1/3} </math> .
</div>
* <font color="red">Central- to Mean-Density Ratio</font>:
: The ratio of the configuration's central density to its mean density is,
<div align="center">
<math>\frac{\rho_c}{\bar{\rho}} = \biggl(\frac{\pi M}{4 R^3}  \biggr)\biggl(\frac{3 M}{4 \pi R^3}  \biggr) = \frac{\pi^2}{3} </math> .
</div>
</div>


=Footnotes=
=Footnotes=


#From our derivation, it is clear that the leading coefficient in the pressure function <math>P(\varpi,z)</math> can be written as <math>\pi G \rho^2 a_3^2 A_3</math>. In [[User:Tohline/Appendix/References#T78|T78]], this coefficient is given as, <math>P_0 = 2\pi G\rho^2 a_3^2 A_3</math>, which is too large by a factor of 2.
#From our derivation, it is clear that the leading coefficient in the pressure function <math>P(\varpi,z)</math> can be written as <math>\pi G \rho^2 a_3^2 A_3</math>. In [[User:Tohline/Appendix/References#T78|T78]], this coefficient is given as, <math>P_0 = 2\pi G\rho^2 a_3^2 A_3</math>, which is too large by a factor of <math>~2</math>.


=Related Wikipedia Discussions=
=Related Wikipedia Discussions=

Revision as of 01:43, 6 July 2019


Maclaurin Spheroids (axisymmetric structure)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

There is no particular reason why one should guess ahead of time that the equilibrium properties of any rotating, self-gravitating configuration should be describable in terms of analytic functions. As luck would have it, however, the gravitational potential at the surface of and inside an homogeneous spheroid is expressible analytically. (The potential is constant on concentric spheroidal surfaces that generally have a different axis ratio from the spheroidal mass distribution.) Furthermore, the gradient of the gravitational potential is separable in cylindrical coordinates, proving to be a simple linear function of both <math>\varpi</math> and <math>~z</math>.

If the spheroid is uniformly rotating, this behavior conspires nicely with the behavior of the centrifugal acceleration — which also will be a linear function of <math>\varpi</math> — to permit an analytic (and integrable) prescription of the pressure gradient. Not surprisingly, it resembles the functional form of the pressure gradient that is required to balance the gravitational force in uniform-density spheres.

As a consequence of this good fortune, the equilibrium structure of a uniformly rotating, uniform-density <math>~(n = 0)</math>, axisymmetric configuration can be shown to be precisely an oblate spheroid whose internal properties are describable in terms of analytic expressions. As we show in an accompanying discussion, the angular velocity that is required to keep a self-gravitating spheroid of a specified eccentricity in equilibrium can be obtained from a theorem — we will refer to it as Maclaurin's Theorem — that was derived from purely geometric arguments over 270 years ago by Colin Maclaurin (1742) in A Treatise of Fluxions. This result has been enumerated in many subsequent publications (e.g., Tassoul 1978; Chandrasekhar 1987). It should be appreciated that both Volume I and Volume II of Maclaurin's (1742) Treatise can now be accessed online via Google Books. Selected excerpts from these two volumes are shown in our accompanying discussion.

Properties of Uniform-Density Spheroids

Surface Definition

Let <math>~a_1</math> be the equatorial radius and <math>~a_3</math> the polar radius of a uniform-density object whose surface is defined precisely by an oblate spheroid. The degree of flattening of the object may be parameterized in terms of the axis ratio <math>~a_3/a_1</math>, or in terms of the object's eccentricity,

<math>

e \equiv \biggl[ 1 - \biggl(\frac{a_3}{a_1}\biggr)^2 \biggr]^{1/2} .

</math>

(For an oblate spheroid, <math>~a_3 \leq a_1</math>; hence, the eccentricity is restricted to the range <math>~0 \leq e \leq 1</math>.) The meridional cross-section of such a spheroid is an ellipse with the same eccentricity. The foci of this ellipse lie in the equatorial plane of the spheroid at a distance <math>~\varpi = ea_1</math> from the minor <math>~(z)</math> axis.

Mean Radius

For purposes of normalization, it will be useful to define the mean radius of the spheroid as,

<math> ~a_\mathrm{mean} \equiv \biggl[a_1^2 a_3 \biggr]^{1/3} = a_1 (1 - e^2)^{1/6} , </math>

which is equivalent to the radius of a sphere in the limit <math>~a_3 = a_1</math> <math>~(e=0)</math>.

Mass

The total mass of such a spheroid is,

<math>

M = \frac{4\pi}{3}~a_1^2 a_3 \rho = \frac{4\pi}{3}~a_1^3 \rho (1 - e^2)^{1/2} .

</math>

Gravitational Potential

In an accompanying discussion entitled, Properties of Homogeneous Ellipsoids, an expression is given for the gravitational potential <math>\Phi(\vec{x})</math> at an internal point or on the surface of an homogeneous ellipsoid with semi-axes <math>~(x,y,z) = (a_1,a_2,a_3)</math>. For an homogeneous, oblate spheroid in which <math>~a_1 = a_2 \geq a_3</math>, this analytic expression defining the potential reduces to the form,

<math>

\Phi(\varpi,z) = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr],

</math>

where, the coefficients <math>~A_1</math>, <math>~A_3</math>, and <math>~I_\mathrm{BT}</math> are functions only of the spheroid's eccentricity. Specifically,

<math> ~A_1 </math>

<math> ~= </math>

<math> \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr](1-e^2)^{1/2} \, ; </math>

<math> ~A_3 </math>

<math> ~= </math>

<math> \frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2} \, ; </math>

<math> ~I_\mathrm{BT} </math>

<math> ~= </math>

<math> ~2A_1 + A_3(1-e^2) = 2 (1-e^2)^{1/2} \biggl[ \frac{\sin^{-1}e}{e}\biggr] \, . </math>

Note that these three expressions have the following values in the limit of a sphere <math>~(e=0)</math> or in the limit of an infinitesimally thin disk <math>~(e=1)</math>:

Limiting Values
(for oblate spheroids)

 

<math>~e=0</math>

<math>~e=1</math>

<math>~A_1</math>

<math>\frac{2}{3}</math>

<math>~0</math>

<math>~A_3</math>

<math>\frac{2}{3}</math>

<math>~2</math>

<math>~I_\mathrm{BT}</math>

<math>~2</math>

<math>~0</math>

Equilibrium Structure

Governing Relations

To obtain the equilibrium structure of Maclaurin spheroids, we will adopt the technique outlined earlier for determining the structure of axisymmetric configurations. Specifically, the algebraic expression,

<math>~H + \Phi_\mathrm{eff} = C_\mathrm{B}</math> ,

must be solved in conjunction with the Poisson equation written in cylindrical coordinates for axisymmetric configurations, namely,

<math> ~\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>

Expression for Effective Potential

For any value of the eccentricity, <math>~e</math>, the above expression for the gravitational potential satisfies this two-dimensional Poisson equation. Furthermore, an algebraic expression defining the centrifugal potential inside a uniformly rotating configuration can be drawn from our accompanying table that summarizes the properties of various simple rotation profiles. Together, these relations give us the relevant expression for the effective potential, namely,

<math> \Phi_\mathrm{eff}(\varpi,z) = \Phi + \Psi = -\pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr] - \frac{1}{2}\varpi^2 \omega_0^2 . </math>

Hence, the enthalpy throughout the configuration must be given by the expression,

<math> H(\varpi,z) = C_\mathrm{B} + \pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - \biggl(A_1 \varpi^2 + A_3 z^2 \biggr) \biggr] + \frac{1}{2}\varpi^2 \omega_0^2 . </math>

This expression contains two constants, <math>~C_\mathrm{B}</math> and <math>~\omega_0</math>, that can be determined from relevant boundary conditions.

Apply Boundary Conditions

The enthalpy should go to zero everywhere on the surface of the spheroid. By pinning the surface down at two points and setting <math>~H=0</math> at both of these locations, we can determine the two unknown constants in the above expression. We choose to pin down the edge of the configuration in the equatorial plane — i.e., at <math>(\varpi,z) = (a_1,0)</math> — and along the symmetry axis at the pole — i.e., at <math>(\varpi,z) = (0,a_3)</math>. From the boundary condition at the pole, we derive the Bernoulli constant, specifically,

<math> C_\mathrm{B} = - \pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - A_3 a_3^2 \biggr] = - \pi G \rho a_1^2 \biggl[ I_\mathrm{BT} - A_3 (1-e^2) \biggr] ; </math>

and from the boundary condition in the equatorial plane we derive the rotational angular velocity, specifically,

<math> \frac{1}{2}a_1^2 \omega_0^2 </math>

<math> ~= </math>

<math> - C_\mathrm{B} - \pi G \rho \biggl[ I_\mathrm{BT} a_1^2 - A_1 a_1^2 \biggr] </math>

<math> \Rightarrow ~~~~~ \omega_0^2 </math>

<math> ~= </math>

<math> 2\pi G \rho \biggl[ A_1 - A_3 (1-e^2) \biggr] \, . </math>

Plugging these constants into the expression for the enthalpy results in the desired solution,

<math> H(\varpi,z) </math>

<math> ~= </math>

<math> \pi G \rho a_1^2 A_3 (1-e^2)\biggl[1 - \biggl( \frac{\varpi}{a_1} \biggr)^2 - \biggl( \frac{z}{a_3} \biggr)^2 \biggr] . </math>

We know from our separate discussion of supplemental, barotropic equations of state that, for a uniform-density, <math>~n = 0</math> polytropic configuration, the pressure is related to the enthalpy via the expression, <math>~P = H\rho</math>. Hence, we conclude that,

<math> P(\varpi,z) </math>

<math> ~= </math>

<math> \pi G \rho^2 a_1^2 A_3 (1-e^2)\biggl[1 - \biggl( \frac{\varpi}{a_1} \biggr)^2 - \biggl( \frac{z}{a_3} \biggr)^2 \biggr] </math>

<math> \Rightarrow ~~~~ \frac{P}{P_0} </math>

<math> ~= </math>

<math> \frac{3}{2} A_3 (1-e^2)^{2/3}\biggl[1 - \biggl( \frac{\varpi}{a_1} \biggr)^2 - \biggl( \frac{z}{a_3} \biggr)^2 \biggr] , </math>

where,

<math>~ P_0 \equiv \frac{2}{3}\pi G \rho^2 a_\mathrm{mean}^2 = \frac{2}{3}\pi G \rho^2 a_1^2 (1-e^2)^{1/3} . </math>

[ T78, §4.5, Eq. (51)1 ]

Footnotes

  1. From our derivation, it is clear that the leading coefficient in the pressure function <math>P(\varpi,z)</math> can be written as <math>\pi G \rho^2 a_3^2 A_3</math>. In T78, this coefficient is given as, <math>P_0 = 2\pi G\rho^2 a_3^2 A_3</math>, which is too large by a factor of <math>~2</math>.

Related Wikipedia Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation