User:Tohline/Appendix/Ramblings/T4Integrals

From VistrailsWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Integrals of Motion in T4 Coordinates

In an accompanying Wiki document, we have derived the properties of an orthogonal, axisymmetric, T3 coordinate system in which the first coordinate, <math>\lambda_1</math>, defines a family of concentric oblate-spheroidal surfaces whose (uniform) flattening is defined by a parameter <math>q \equiv R_\mathrm{eq}/Z_\mathrm{pole}</math>. In a separate, but related, Wiki document, we attempt to derive the <math>3^\mathrm{rd}</math> isolating integral of motion for massless particles that move inside a flattened, axisymmetric potential whose equipotential surfaces align with <math>\lambda_1 = \mathrm{constant}</math> surfaces in the special (quadratic) case when <math>q^2 = 2</math>. While examining this special case, we noticed that, in T3 Coordinates, the <math>h_1</math> and <math>h_2</math> scale factors are only a function of the coordinate ratio <math>\lambda_1/\lambda_2</math>. This has led us to wonder whether it might be more fruitful to search for the <math>3^\mathrm{rd}</math> isolating integral using a coordinate system in which one of the coordinates is defined by this T3-coordinate ratio.

It is with this in mind that we explore the development of a new T4 coordinate system. From the very beginning we will restrict the T4-coordinate definition to the special case of <math>q^2 = 2</math> because, at present, we think that the coordinate T3-coordinate ratio <math>\lambda_1/\lambda_2</math> is only interesting in the quadratic case. (See, for example, the polynomial root derived to complete the T1-coordinate inversion for the cubic case <math>q^2=3</math>; it is another combination of the T3 coordinates that appears to be relevant in the cubic case.)

STOP!

(7/06/2010)

As defined, below, this is not an orthogonal coordinate system.

Definition

In what follows, the coordinates <math>(\lambda_1,\lambda_2,\lambda_3)</math> refer to T3 Coordinates. Let's define a set of orthogonal T4 Coordinates for the special (quadratic) case <math>q^2=2</math> such that,

<math> \xi_1 </math>

<math> \equiv </math>

<math> (\lambda_1^2 + \lambda_2^2)^{1/2} </math>

<math> = </math>

<math> \varpi\biggl[1 + \sinh^2\Zeta + (\sinh\Zeta)^{2/(1-q^2)} \biggr]^{1/2} </math>

<math> \xrightarrow{~~(q^2=2)~~} </math>

<math> \varpi\biggl[1 + \sinh^2\Zeta + \frac{1}{\sinh^2\Zeta} \biggr]^{1/2} ; </math>

<math> \xi_2 </math>

<math> \equiv </math>

<math> \frac{\lambda_2}{\lambda_1} </math>

<math> = </math>

<math> \biggl[ \frac{(\sinh\Zeta)^{2/(1-q^2)}}{1+\sinh^2\Zeta} \biggr]^{1/2} </math>

<math> \xrightarrow{~~(q^2=2)~~} </math>

<math> \biggl[ \frac{1}{\sinh^2\Zeta(1+\sinh^2\Zeta)} \biggr]^{1/2} ; </math>

<math> \tan\xi_3 </math>

<math> \equiv </math>

<math> \frac{y}{x} , </math>

 

 

 

 

where,

<math> \sinh^2\Zeta \equiv \biggl(\frac{qz}{\varpi}\biggr)^2 ~~~~\xrightarrow{~~(q^2=2)~~} ~~~~ \frac{2z^2}{\varpi^2} . </math>

The coordinate inversion — from <math>(\xi_1,\xi_2,\xi_3)</math> back to <math>(\lambda_1,\lambda_2,\lambda_3)</math> — is straightforward. Specifically,

<math> \lambda_1 </math>

<math> = </math>

<math> \xi_1 \cos\biggl[ \tan^{-1}\xi_2 \biggr] ; </math>

<math> \lambda_2 </math>

<math> = </math>

<math> \xi_1 \sin\biggl[ \tan^{-1}\xi_2 \biggr] ; </math>

<math> \lambda_3 </math>

<math> = </math>

<math> \xi_3 . </math>

Here are some relevant partial derivatives:

<math> \frac{\partial\sinh^2\Zeta}{\partial\varpi} = -\frac{4z^2}{\varpi^3} ; </math>

<math> \frac{\partial\sinh^2\Zeta}{\partial z} = + \frac{4z}{\varpi^2} . </math>

Partial derivatives with respect to cylindrical coordinates are,

 

<math> \frac{\partial}{\partial \varpi} </math>

<math> \frac{\partial}{\partial z} </math>

<math> \frac{\partial}{\partial \phi} </math>

<math>{\xi_1}</math>

<math> \frac{\varpi}{\xi_1 z^2}\biggl(\varpi^2 + z^2 \biggr) </math>

<math> \frac{1}{2\xi_1 z^3}\biggl(4z^4 - \varpi^4 \biggr) </math>

<math> 0 </math>

<math>\xi_2</math>

<math> \frac{2\xi_2^3 z^2}{\varpi^5}(\varpi^2 + 4z^2) </math>

<math> - \frac{2\xi_2^3 z}{\varpi^4}(\varpi^2 + 4z^2) </math>

<math> 0 </math>

<math>\xi_3</math>

<math> 0 </math>

<math> 0 </math>

<math> 1 </math>

Hence, the partials with respect to Cartesian coordinates are,

 

<math> \frac{\partial}{\partial x} </math>

<math> \frac{\partial}{\partial y} </math>

<math> \frac{\partial}{\partial z} </math>

<math>\xi_1</math>

<math> \frac{x}{(1-q^2)\xi_1} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{q^2 \xi_1^2}{\varpi^2} \biggr] </math>

<math>\xrightarrow{(q^2=2)}~~~ \frac{x}{\xi_1 z^2} (\varpi^2 + z^2)</math>

<math> \frac{y}{(1-q^2)\xi_1} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{q^2 \xi_1^2}{\varpi^2} \biggr] </math>

<math>\xrightarrow{(q^2=2)}~~~ \frac{y}{\xi_1 z^2} (\varpi^2 + z^2) </math>

<math> - \frac{\varpi^2}{(1-q^2)\xi_1 z} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{\xi_1^2}{\varpi^2} \biggr] </math>

<math>\xrightarrow{(q^2=2)}~~~ + \frac{1}{2\xi_1 z^3}\biggl(4z^4 - \varpi^4 \biggr) </math>

<math>\xi_2</math>

<math> ~~ </math>

<math> ~~ </math>

<math> ~~ </math>

<math>\xi_3</math>

<math> -\frac{y}{\varpi^2} </math>

<math> +\frac{x}{\varpi^2} </math>

<math> 0 </math>


The scale factors are,

<math>h_1^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_1}{\partial \varpi} \biggr)^2 + \biggl( \frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math> = </math>

<math> \biggl[ \frac{4\xi_1^2 z^6 }{(\varpi^2 + 4z^2)(\varpi^6 + 4z^6)} \biggr] </math>

<math>h_2^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\xi_2}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_2}{\partial \varpi} \biggr)^2 + \biggl( \frac{\partial\xi_2}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math> = </math>

<math> \frac{\varpi^{10}}{4\xi_2^6 z^2} \biggl[ \frac{1}{(\varpi^2 + 4z^2)^2(\varpi^2 + z^2)} \biggr] </math>

<math>h_3^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\xi_3}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \varpi^2 </math>

 

 

where,        <math>~~</math>.

The position vector is,

<math>\vec{x}</math>

<math>=</math>

<math> \hat\imath x + \hat\jmath y + \hat{k}z </math>

<math>=</math>

<math> ~~ </math>

See Also

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation