User:Tohline/Appendix/Ramblings/RadiationHydro

From VistrailsWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Radiation-Hydrodynamics

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Governing Equations

Hayes et al. (2006) — But Ignoring the Effects of Magnetic Fields

First, referencing §2 of J. C. Hayes et al. (2006, ApJS, 165, 188 - 228) — alternatively see §2.1 of D. C. Marcello & J. E. Tohline (2012, ApJS, 199, id. 35, 29 pp) — we see that the set of principal governing equations that is typically used in the astrophysics community to include the effects of radiation on self-gravitating fluid flows includes the,

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

Hayes et al. (2006), p. 190, Eq. (15)

the,

Continuity Equation

LSU Key.png

<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math>

and — ignoring magnetic fields — a modified version of the,

Lagrangian Representation
of the Euler Equation,

<math>~\frac{d\vec{v}}{dt}</math>

<math>~=</math>

<math>~ - \frac{1}{\rho}\nabla P - \nabla \Phi + \frac{1}{\rho}\biggl(\frac{\chi}{c}\biggr) \vec{F} \, , </math>

plus the following pair of additional energy-conservation-based dynamical equations:

<math>~\rho \frac{d}{dt} \biggl( \frac{e}{\rho}\biggr) + P\nabla \cdot \vec{v} </math>

<math>~=</math>

<math>~ c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, , </math>

<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math>

<math>~=</math>

<math>~ - \biggl[ \nabla \cdot \vec{F} + \bold{P}_\mathrm{st}:\nabla{\vec{v}} + c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \biggr] \, , </math>

where, in this last expression, <math>~\bold{P}_\mathrm{st}</math> is the radiation stress tensor.

Various Realizations

First Law

By combining the continuity equation with the

First Law of Thermodynamics

LSU Key.png

<math>T \frac{ds}{dt} = \frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr)</math>

we can write,

<math>~\rho T\frac{ds}{dt}</math>

<math>~=</math>

<math>~ \rho \frac{d\epsilon}{dt} - \frac{P}{\rho} \frac{d\rho}{dt} </math>

 

<math>~=</math>

<math>~ \rho \frac{d\epsilon}{dt} + P\nabla\cdot \vec{v} \, . </math>

Given that the specific internal energy <math>~(\epsilon)</math> and the internal energy density <math>~(e)</math> are related via the expression, <math>~\epsilon = e/\rho</math>, we appreciate that the first of the above-identified energy-conservation-based dynamical equations is simply a restatement of the 1st Law of Thermodynamics in the context of a physical system whose fluid elements gain or lose entropy as a result of the (radiation-transport-related) source and sink terms,

<math>~\rho T \frac{ds}{dt}</math>

<math>~=</math>

<math>~c\kappa_E E_\mathrm{rad} - 4\pi \kappa_p B_p \, .</math>

Energy-Density of Radiation Field

By combining the left-hand side of the second of the above-identified energy-conservation-based dynamical equations with the continuity equation, then replacing the Lagrangian (that is, the material) time derivative by its Eulerian counterpart, the left-hand side can be rewritten as,

<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr)</math>

<math>~=</math>

<math>~ \frac{dE_\mathrm{rad}}{dt} - \frac{E_\mathrm{rad}}{\rho}~\frac{d\rho}{dt} </math>

 

<math>~=</math>

<math>~ \frac{dE_\mathrm{rad}}{dt} + E_\mathrm{rad}\nabla\cdot \vec{v} </math>

 

<math>~=</math>

<math>~ \frac{\partial E_\mathrm{rad}}{\partial t} + \vec{v}\cdot \nabla E_\mathrm{rad}+ E_\mathrm{rad}\nabla\cdot \vec{v} </math>

 

<math>~=</math>

<math>~ \frac{\partial E_\mathrm{rad}}{\partial t} + \nabla\cdot (E_\mathrm{rad} \vec{v}) \, , </math>

which provides an alternate form of the expression, as found for example in equation (4) of Marcello & J. E. Tohline (2012).

Thermodynamic Equilibrium

In an optically thick environment that is in thermodynamic equilibrium at temperature, <math>~T</math>, the energy-density of the radiation field is,

<math>~E_\mathrm{rad}</math>

<math>~=</math>

<math>~a_\mathrm{rad}T^4 \, ,</math>

and each fluid element will radiate — and, hence lose some of its internal energy to the surrounding radiation field — at a rate that is governed by the integrated Planck function,

<math>~B_p = \frac{\sigma}{\pi}T^4 </math>

<math>~=</math>

<math>~\frac{ca_\mathrm{rad}}{4\pi} T^4 \, ,</math>

where, <math>~\sigma \equiv \tfrac{1}{4}c a_\mathrm{rad}</math>, is the Stefan-Boltzmann constant, and the radiation constant — which is included in an associated appendix among our list of key physical constants — is,

<math>~a_\mathrm{rad}</math>

<math>~\equiv</math>

<math>~\frac{8\pi^5}{15}\frac{k^4}{(hc)^3} \, .</math>

Also under these conditions, it can be shown that — see, for example, discussion associated with equations (12) and (18) in Marcello & J. E. Tohline (2012)

<math>~ \bold{P}_\mathrm{st} :\nabla{\vec{v}}</math>

<math>~\rightarrow</math>

<math>~\frac{E_\mathrm{rad}}{3} \nabla \cdot \vec{v} \, ,</math>

and,

<math>~\vec{F}</math>

<math>~\rightarrow</math>

<math>~- \frac{1}{3}\biggl(\frac{c}{\chi}\biggr) \nabla E_\mathrm{rad} \, ,</math>

which implies,

<math>~\biggl(\frac{\chi}{c}\biggr) \vec{F}</math>

<math>~\rightarrow</math>

<math>~-\nabla P_\mathrm{rad} \, ,</math>

where we have recognized that the radiation pressure,

<math>~P_\mathrm{rad} = \frac{1}{3}E_\mathrm{rad}</math>

<math>~=</math>

<math>~\frac{1}{3}a_\mathrm{rad}T^4 \, .</math>

Hence, the modified Euler equation becomes,

<math>~\rho ~ \frac{d\vec{v}}{dt}</math>

<math>~=</math>

<math>~ - \nabla (P+P_\mathrm{rad}) - \rho \nabla \Phi \, , </math>

and the equation governing the time-dependent behavior of <math>~E_\mathrm{rad}</math> becomes,

<math>~\frac{\partial E_\mathrm{rad}}{\partial t} + \nabla\cdot (E_\mathrm{rad} \vec{v}) + \frac{1}{3}E_\mathrm{rad} \nabla \cdot \vec{v} </math>

<math>~=</math>

<math>~ - \nabla \cdot \vec{F} - c\kappa_E E_\mathrm{rad} + 4\pi \kappa_p B_p \, . </math>


Optically Thick Regime

In the optically thick regime, the following conditions hold:

<math>~c\kappa_E E_\mathrm{rad}</math>

<math>~\rightarrow</math>

<math>~4\pi \kappa_p B_p \, ,</math>

<math>~E_\mathrm{rad}</math>

<math>~\rightarrow</math>

<math>~aT^4 \, ,</math>

<math>~\biggl(\frac{\chi}{c}\biggr) \vec{F}</math>

<math>~\rightarrow</math>

<math>~- \nabla \biggl(\frac{aT^4}{3} \biggr) \, ,</math>

<math>~ \vec{\bold{P}}:\nabla{\vec{v}}</math>

<math>~\rightarrow</math>

<math>~\frac{E_\mathrm{rad}}{3} \nabla \cdot \vec{v} \, .</math>

Start with,

<math>~Tds_\mathrm{rad} = dQ</math>

<math>~=</math>

<math>~ d\biggl(\frac{E_\mathrm{rad}}{\rho} \biggr) + P_\mathrm{rad~}d\biggl( \frac{1}{\rho} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{1}{\rho}~d E_\mathrm{rad} + E_\mathrm{rad~}d\biggl( \frac{1}{\rho} \biggr) + P_\mathrm{rad~}d\biggl( \frac{1}{\rho} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{1}{\rho}~d (aT^4 ) + \frac{4}{3} aT^4~d\biggl( \frac{1}{\rho} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{4aT^3}{\rho}~dT + \frac{4}{3} aT^4~d\biggl( \frac{1}{\rho} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{4aT}{3} \biggl[ \frac{3T^2}{\rho}~dT + T^3~d\biggl( \frac{1}{\rho} \biggr) \biggr] </math>

 

<math>~=</math>

<math>~ \frac{4aT}{3} ~d\biggl( \frac{T^3}{\rho} \biggr) </math>

<math>~\Rightarrow ~~~ ds_\mathrm{rad}</math>

<math>~=</math>

<math>~ ~d\biggl( \frac{4aT^3}{3\rho} \biggr) </math>

Integrating then gives us,

<math>~s_\mathrm{rad}</math>

<math>~=</math>

<math>~ ~\frac{4aT^3}{3\rho} + \mathrm{const.} </math>

D. D. Clayton (1968), Eq. (2-136)
[Shu92], Vol. I, §9, immediately following Eq. (9.22)

This also means that,

<math>~\rho \frac{d}{dt} \biggl( \frac{E_\mathrm{rad}}{\rho}\biggr) + \frac{E_\mathrm{rad}}{3} \nabla\cdot\vec{v}</math>

<math>~=</math>

<math>~ \frac{dE_\mathrm{rad}}{dt} - \frac{E_\mathrm{rad}}{\rho} \frac{d\rho}{dt} + \frac{E_\mathrm{rad}}{3} \nabla\cdot\vec{v} </math>

 

<math>~=</math>

<math>~ \frac{dE_\mathrm{rad}}{dt} + \frac{4E_\mathrm{rad}}{3} \nabla\cdot\vec{v} </math>

 

<math>~=</math>

<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{3}{4} \cdot \frac{d\ln E_\mathrm{rad}}{dt} + \nabla\cdot\vec{v} \biggr] </math>

 

<math>~=</math>

<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{d\ln (E_\mathrm{rad})^{3/4}}{dt} + \nabla\cdot\vec{v} \biggr] </math>

 

<math>~=</math>

<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{d\ln T^3}{dt} - \frac{d\ln\rho}{dt} \biggr] </math>

 

<math>~=</math>

<math>~\frac{4E_\mathrm{rad}}{3} \biggl[ \frac{d\ln (T^3/\rho)}{dt} \biggr] </math>

 

<math>~=</math>

<math>~\frac{4aT^4}{3} \biggl( \frac{\rho}{T^3}\biggr) \biggl[ \frac{d(T^3/\rho)}{dt} \biggr] </math>

 

<math>~=</math>

<math>~ \rho T\biggl[ \frac{ds_\mathrm{rad}}{dt} \biggr] \, . </math>

Hence, the equation governing the time-dependent behavior of <math>~E_\mathrm{rad}</math> becomes an expression detailing the time-dependent behavior of the specific entropy, namely,

<math>~\rho T~\frac{ds_\mathrm{rad}}{dt} </math>

<math>~=</math>

<math>~ - \nabla \cdot \vec{F} - c\kappa_E E_\mathrm{rad} + 4\pi \kappa_p B_p \, . </math>

[Shu92], §9, Eq. (9.22)

Traditional Stellar Structure Equations

Hydrostatic Balance

LSU Key.png

<math>~\frac{dP}{dr} = - \frac{GM_r \rho}{r^2}</math>


Mass Conservation

LSU Key.png

<math>~\frac{dM_r}{dr} = 4\pi r^2 \rho</math>


Energy Conservation

LSU Key.png

<math>~\frac{dL_r}{dr} = 4\pi r^2 \rho \epsilon_\mathrm{nuc}</math>


Radiation Transport

LSU Key.png

<math>~\frac{dT}{dr} = - \frac{ 3 }{ 4a_\mathrm{rad} c} \biggl(\frac{ \kappa \rho }{ T^3 }\biggr) \frac{ L_r }{ 4\pi r^2 }</math>


M. Schwarzschild (1958), Chapter III, §12, Eqs. (12.1), (12.2), (12.3), (12.4)
D. D. Clayton (1968), Chapter 6, Eqs. (6-1), (6-2), (6-3a), (6-4a)
[HK94], Eqs. (1.5), (1.1), (1.54), (1.57)
[KW94], Eqs. (1.2), (2.4), (4.22), (5.11)
W. K. Rose (1998), Eqs. (2.27), (2.28), (2.xx), (2.80)
[P00], Vol. II, Eqs. (2.1), (2.2), (2.18), (2.8)
A. R. Choudhuri (2010), Chapter 3, Eqs. (3.2), (3.1), (3.15), (3.16)
D. Maoz (2016), §3.5, Eqs. (3.56), (3.57), (3.59), (3.58)


Related Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation