User:Tohline/Appendix/Ramblings/Radiation/SummaryScalings

From VistrailsWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Summary of Scalings

On an accompanying Wiki page we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following tables summarize some of the mathematical relationships that have been derived in that accompanying discussion.


General Relation

Case A:

<math> \frac{m_\mathrm{cgs}}{m_\mathrm{code}} </math>

<math> = </math>

<math> 0.40375~\mu_e^2 M_\mathrm{Ch} \biggl( \frac{\tilde{g}^3 \tilde{a}}{\tilde{r}^4 \bar{\mu}^4 } \biggr)^{1/2} </math>

<math>= ~~2.8094\times 10^{33}~\mathrm{g} </math>

<math> \frac{\ell_\mathrm{cgs}}{\ell_\mathrm{code}} </math>

<math> = </math>

<math> 4.4379\times 10^{-4}~ \mu_e \ell_\mathrm{Ch}~\biggl( \frac{\tilde{c}^4 \tilde{g} \tilde{a}} {\bar{\mu}^4 \tilde{r}^4} \biggr)^{1/2} </math>

<math>=~~ 8.179\times 10^{9}~\mathrm{cm}</math>

<math> \frac{t_\mathrm{cgs}}{t_\mathrm{code}} </math>

<math> = </math>

<math> 2.9216\times 10^{-6}~\mu_e^{1/2} t_\mathrm{Ch} ~\biggl( \frac{\tilde{c}^6 \tilde{g} \tilde{a}} {\bar{\mu}^4 \tilde{r}^4} \biggr)^{1/2} </math>

<math>= ~~54.02~\mathrm{s}</math>

<math> \frac{T_\mathrm{cgs}}{T_\mathrm{code}} </math>

<math> = </math>

<math> 1.08095\times 10^{13} ~\biggl( \frac{\tilde{r} \bar\mu}{\tilde{c}^2} \biggr) </math>

<math>= ~~1.618 \times 10^8~\mathrm{K}</math>

where:

<math> \mu_e^2 M_\mathrm{Ch} = 1.14169\times 10^{34}~\mathrm{g} </math>;     <math> \mu_e \ell_\mathrm{Ch} = 7.71311\times 10^{8}~\mathrm{cm} </math>;     <math> \mu_e^{1/2} t_\mathrm{Ch} = 3.90812~\mathrm{s} </math>

Case A   <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math>

Now let's convert all of the system parameters listed on the accompanying page that details the properties of various polytropic binary systems.

Properties of (<math>n=3/2</math>) Polytropic Binary Systems

Q071

Binary System

Accretor

Donor

 

<math>q</math>

<math>M_\mathrm{tot}</math>

<math>a</math>

<math>P = \frac{2\pi}{\Omega}</math>

<math>J_\mathrm{tot}</math>

<math>M_a</math>

<math>\rho^\mathrm{max}_a</math>

<math>K^a_{3/2}</math>

<math>R_a</math>

<math>M_d</math>

<math>\rho^\mathrm{max}_d</math>

<math>K^d_{3/2}</math>

<math>R_d</math>

<math>f_\mathrm{RL}</math>

SCF units

0.70000

0.02371

0.83938

31.19

<math>8.938\times 10^{-4}</math>

0.013945

1.0000

0.02732

0.2728

0.009761

0.6077

0.02512

0.2888

0.998

conversion2

 

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math>

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math>

 

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^5 </math>

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math>

 

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 </math>

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math>

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math>

 

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 </math>

<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math>

 

Rad-Hydro units

0.70000

0.6847

2.5752

31.19

0.24293

0.4027

1.0000

0.2571

0.8369

0.28187

0.6077

0.2364

0.88603

0.998

cgs units

0.70000

<math>1.924\times 10^{33}</math>

<math>2.106\times 10^{10}</math>

<math>1.687\times 10^{3}</math>

<math>1.924\times 10^{33}</math>

<math>1.132\times 10^{33}</math>

<math>5.136\times 10^{3}</math>

 

<math>6.845\times 10^{9}</math>

<math>7.921\times 10^{32}</math>

<math>3.121\times 10^{3}</math>

 

<math>7.247\times 10^{9}</math>

0.996

Other units

 

<math>0.967 M_\odot</math>

<math>0.303 R_\odot</math>

<math>28.1~\mathrm{min}</math>

 

<math>0.569 M_\odot</math>

 

 

<math>0.0984 R_\odot</math>

<math>0.398 M_\odot</math>

 

 

<math>0.1042 R_\odot</math>

 

1Model Q07 (<math>q = 0.700</math>): Drawn from the first page of the accompanying PDF document. NOTE: In this PDF document, Roche-lobe volumes appear to be too large by factor of 2.
2For this model, <math>(\ell_\mathrm{code}/\ell_\mathrm{SCF}) = \pi(128 - 3)/128 = 3.068</math>; see more detailed, accompanying discussion.


Here are some additional useful relations:


General Relation

Case A:

<math> f_\mathrm{Edd} \equiv \frac{L_\mathrm{acc}}{L_\mathrm{Edd}} </math>

<math> = </math>

<math> 1.25\times 10^{21} \biggl( \frac{\tilde{g}^{1/2} \tilde{r}^2 \bar{\mu}^2 }{\tilde{c}^5 \tilde{a}^{1/2}} \biggr) \biggl[ \frac{\dot{M}}{R_a} \biggr]_\mathrm{code} </math>

<math>= ~~6.74\times 10^9 \biggl[ \frac{\dot{M}}{R_a} \biggr]_\mathrm{code}</math>

<math> \frac{\rho_\mathrm{threshold}}{\rho_\mathrm{max}} \equiv \frac{1}{\rho_\mathrm{max}\kappa_\mathrm{T} (\Delta R)} </math>

<math> = </math>

<math> 5.164\times 10^{-21}~\biggl( \frac{\tilde{c}^4 \tilde{a}^{1/2}}{\bar{\mu}^2 \tilde{r}^2 \tilde{g}^{1/2}} \biggr) \biggl[ \frac{1}{\rho_\mathrm{max}(\Delta R)} \biggr]_\mathrm{code} </math>

<math>=~~ 4.83\times 10^{-12}</math>

<math> \Gamma \equiv \frac{P_\mathrm{gas}}{P_\mathrm{rad}} </math>

<math> = </math>

<math> \biggl( \frac{3\tilde{r}}{\tilde{a}} \biggr) \biggl[ \frac{ \rho }{T^3} \biggr]_\mathrm{code} </math>

<math>= ~~30 \biggl[ \frac{ \rho }{T^3} \biggr]_\mathrm{code}</math>

<math> \frac{v_\mathrm{circ}}{c} \equiv \frac{2\pi a_\mathrm{separation}}{c P_\mathrm{orbit}} </math>

<math> = </math>

<math> \frac{2\pi}{\tilde{c}} \biggl[\frac{a_\mathrm{sep}}{P_\mathrm{orb}}\biggr]_\mathrm{code} </math>

<math>= ~~0.032 \biggl[\frac{a_\mathrm{sep}}{P_\mathrm{orb}}\biggr]_\mathrm{code}</math>

Case A   <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math>


Combining the above Case A relations with the RadHydro-code properties of the Q0.7 polytropic binary that serves as an initial condition for Dominic's simulations, we conclude the following:

(1)  The system will experience "super-Eddington" accretion (i.e., <math>f_\mathrm{Edd} > 1</math>) when

<math> [\dot{M}]_\mathrm{code} > 1.3\times 10^{-10} . </math>

(2)  The mean-free-path, <math>\ell_\mathrm{mfp}</math>, of a photon will be less than one grid cell <math>(\Delta R)_\mathrm{code}</math> when

<math> [\rho]_\mathrm{code} > \rho_\mathrm{threshold} = 5\times 10^{-12} . </math>

(3)  The system is weakly relativistic because,

<math> \frac{v_\mathrm{circ}}{c} = 0.0026 . </math>

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation