Difference between revisions of "User:Tohline/Appendix/Ramblings/PowerSeriesExpressions"

From VistrailsWiki
Jump to navigation Jump to search
Line 6: Line 6:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


==Polytropic Lane-Emden Function==
==Broadly Used Mathematical Expressions (shown here without proof)==
===Binomial===
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~(1 \pm x)^n</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 ~\pm ~nx + \biggl[\frac{n(n-1)}{2!}\biggr]x^2
~\pm~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]x^3
+ \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]x^4
~~\pm ~~ \cdots
</math>
&nbsp; &nbsp;&nbsp; for <math>~(x^2 < 1)</math>
  </td>
</tr>
</table>
</div>
 
See also:
* [http://mathworld.wolfram.com/BinomialTheorem.html Wolfram's presentation]
 
===Exponential===
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~e^x</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots
</math>
  </td>
</tr>
</table>
</div>
 
 
==Expressions with Astrophysical Relevance==
===Polytropic Lane-Emden Function===
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> &#8212; expanded about the coordinate center, <math>~\xi = 0</math> &#8212; that approximately satisfies the Lane-Emden equation,
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> &#8212; expanded about the coordinate center, <math>~\xi = 0</math> &#8212; that approximately satisfies the Lane-Emden equation,
<div align="center">
<div align="center">
Line 25: Line 75:
   <td align="left">
   <td align="left">
<math>~
<math>~
\theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + \cdots
\theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots
</math>
  </td>
</tr>
</table>
</div>
 
First derivative:
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{d\Theta_H}{d\xi}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
a + 2b\xi + 3c\xi^2 + 4d\xi^3 + 5e\xi^4 + 6f\xi^5 + 7g\xi^6 + 8h\xi^7 + \cdots
</math>
  </td>
</tr>
</table>
</div>
 
Left-hand-side of Lane-Emden equation:
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2a}{\xi} + 2\cdot 3b + 2^2\cdot 3c\xi + 2^2\cdot 5d\xi^2 + 2\cdot 3\cdot 5e\xi^3 + 2\cdot 3\cdot 7f\xi^4 + 2^3\cdot 7g\xi^5 + 2^3\cdot 3^2h\xi^6 + \cdots
</math>
</math>
   </td>
   </td>
Line 32: Line 122:
</div>
</div>


Right-hand-side of Lane-Emden equation (adopt the normalization, <math>~\theta_0=1</math>, then use the [[#Binomial|binomial theorem]] recursively):
<div align="center">
<table border="0" cellpadding="5" align="center">


Result:
<tr>
  <td align="right">
<math>~\Theta_H^n</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2
~+~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]F^3
+ \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]F^4
~~+ ~~ \cdots
</math>
  </td>
</tr>
</table>
</div>
where,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~F</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
a\xi\biggl[1 + \frac{b}{a}\xi + \frac{c}{a}\xi^2 + \frac{d}{a}\xi^3 + \frac{e}{a}\xi^4 + \frac{f}{a}\xi^5 + \frac{g}{a}\xi^6 + \frac{h}{a}\xi^7 + \cdots\biggr] \, .
</math>
  </td>
</tr>
</table>
</div>
<font color="red">First approximation</font>:  &nbsp;Assume that <math>~e=f=g=h=0</math>, in which case the LHS contains terms only up through <math>~\xi^2</math>.  This means that we must ignore all terms on the RHS that are of higher order than <math>~\xi^2</math>; that is,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Theta_H^n</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
1 ~+ ~n(a\xi+b\xi^2) + \biggl[\frac{n(n-1)}{2!}\biggr]a^2\xi^2
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
1 ~+~na\xi + ~\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]\xi^2\, .
</math>
  </td>
</tr>
</table>
</div>
Expressions for the various coefficients can now  be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>.  Remembering to include a negative sign on the RHS, we find:
<div align="center">
<table border="1" cellpadding="5" align="center">
<tr>
  <td align="center">Term</td>
  <td align="center">LHS</td>
  <td align="center">RHS</td>
  <td align="center">Implication</td>
</tr>
 
<tr>
  <td align="right">
<math>~\xi^{-1}:</math>
  </td>
  <td align="center">
<math>~2a</math>
  </td>
  <td align="center">
<math>~0</math>
  </td>
  <td align="left">
<math>~\Rightarrow ~~~a=0</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\xi^{0}:</math>
  </td>
  <td align="center">
<math>~2\cdot 3 b</math>
  </td>
  <td align="center">
<math>~-1</math>
  </td>
  <td align="left">
<math>~\Rightarrow ~~~b=- \frac{1}{6}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\xi^{1}:</math>
  </td>
  <td align="center">
<math>~2^2\cdot 3 c</math>
  </td>
  <td align="center">
<math>~-na</math>
  </td>
  <td align="left">
<math>~\Rightarrow ~~~c=0</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\xi^{2}:</math>
  </td>
  <td align="center">
<math>~2^2\cdot 5 d</math>
  </td>
  <td align="center">
<math>~-\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]</math>
  </td>
  <td align="left">
<math>~\Rightarrow ~~~d=+\frac{n}{120}</math>
  </td>
</tr>
</table>
</div>
By including higher and higher order terms in the series expansion for <math>~\Theta_H</math>, and proceeding along the same line of deductive reasoning, one finds:
 
* Expressions for the four coefficients, <math>~a, b, c, d</math>, remain unchanged.
* The coefficient is zero for all other terms that contain ''odd'' powers of <math>~\xi</math>; specifically, for example, <math>~e = g = 0</math>.
* The coefficients of <math>~\xi^6</math> and <math>~\xi^8</math> are, respectively,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~f</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{n}{378}\biggl(\frac{n}{5}-\frac{1}{8}  \biggr) \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~h</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{n(122n^2 -183n + 70)}{3265920}  \, .</math>
  </td>
</tr>
</table>
</div>
 
 
In summary, the desired, approximate power-series expression for the polytropic Lane-Emden function is:
<div align="center" id="PolytropicLaneEmden">
<div align="center" id="PolytropicLaneEmden">
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center">
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center">
Line 55: Line 353:
</div>
</div>


==Isothermal Lane-Emden Function==
===Isothermal Lane-Emden Function===
We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> &#8212; expanded about the coordinate center, <math>~r = 0</math> &#8212; that approximately satisfies the isothermal Lane-Emden equation,
We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> &#8212; expanded about the coordinate center, <math>~r = 0</math> &#8212; that approximately satisfies the isothermal Lane-Emden equation,
<div align="center">
<div align="center">
Line 121: Line 419:
* Equation (377) from &sect;22 in Chapter IV of [[User:Tohline/Appendix/References#C67|C67]]).
* Equation (377) from &sect;22 in Chapter IV of [[User:Tohline/Appendix/References#C67|C67]]).


==Displacement Function for Polytropic LAWE==
===Displacement Function for Polytropic LAWE===








==Displacement Function for Isothermal LAWE==
===Displacement Function for Isothermal LAWE===






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 00:18, 26 February 2017

Approximate Power-Series Expressions

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Broadly Used Mathematical Expressions (shown here without proof)

Binomial

<math>~(1 \pm x)^n</math>

<math>~=</math>

<math>~ 1 ~\pm ~nx + \biggl[\frac{n(n-1)}{2!}\biggr]x^2 ~\pm~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]x^3 + \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]x^4 ~~\pm ~~ \cdots </math>      for <math>~(x^2 < 1)</math>

See also:

Exponential

<math>~e^x</math>

<math>~=</math>

<math>~ 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots </math>


Expressions with Astrophysical Relevance

Polytropic Lane-Emden Function

We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation,

LSU Key.png

<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math>

A general power-series should be of the form,

<math>~\Theta_H</math>

<math>~=</math>

<math>~ \theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots </math>

First derivative:

<math>~\frac{d\Theta_H}{d\xi}</math>

<math>~=</math>

<math>~ a + 2b\xi + 3c\xi^2 + 4d\xi^3 + 5e\xi^4 + 6f\xi^5 + 7g\xi^6 + 8h\xi^7 + \cdots </math>

Left-hand-side of Lane-Emden equation:

<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr)</math>

<math>~=</math>

<math>~ \frac{2a}{\xi} + 2\cdot 3b + 2^2\cdot 3c\xi + 2^2\cdot 5d\xi^2 + 2\cdot 3\cdot 5e\xi^3 + 2\cdot 3\cdot 7f\xi^4 + 2^3\cdot 7g\xi^5 + 2^3\cdot 3^2h\xi^6 + \cdots </math>

Right-hand-side of Lane-Emden equation (adopt the normalization, <math>~\theta_0=1</math>, then use the binomial theorem recursively):

<math>~\Theta_H^n</math>

<math>~=</math>

<math>~ 1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 ~+~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]F^3 + \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]F^4 ~~+ ~~ \cdots </math>

where,

<math>~F</math>

<math>~\equiv</math>

<math>~ a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots </math>

 

<math>~=</math>

<math>~ a\xi\biggl[1 + \frac{b}{a}\xi + \frac{c}{a}\xi^2 + \frac{d}{a}\xi^3 + \frac{e}{a}\xi^4 + \frac{f}{a}\xi^5 + \frac{g}{a}\xi^6 + \frac{h}{a}\xi^7 + \cdots\biggr] \, . </math>

First approximation:  Assume that <math>~e=f=g=h=0</math>, in which case the LHS contains terms only up through <math>~\xi^2</math>. This means that we must ignore all terms on the RHS that are of higher order than <math>~\xi^2</math>; that is,

<math>~\Theta_H^n</math>

<math>~\approx</math>

<math>~ 1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 </math>

 

<math>~\approx</math>

<math>~ 1 ~+ ~n(a\xi+b\xi^2) + \biggl[\frac{n(n-1)}{2!}\biggr]a^2\xi^2 </math>

 

<math>~\approx</math>

<math>~ 1 ~+~na\xi + ~\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]\xi^2\, . </math>

Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>. Remembering to include a negative sign on the RHS, we find:

Term LHS RHS Implication

<math>~\xi^{-1}:</math>

<math>~2a</math>

<math>~0</math>

<math>~\Rightarrow ~~~a=0</math>

<math>~\xi^{0}:</math>

<math>~2\cdot 3 b</math>

<math>~-1</math>

<math>~\Rightarrow ~~~b=- \frac{1}{6}</math>

<math>~\xi^{1}:</math>

<math>~2^2\cdot 3 c</math>

<math>~-na</math>

<math>~\Rightarrow ~~~c=0</math>

<math>~\xi^{2}:</math>

<math>~2^2\cdot 5 d</math>

<math>~-\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]</math>

<math>~\Rightarrow ~~~d=+\frac{n}{120}</math>

By including higher and higher order terms in the series expansion for <math>~\Theta_H</math>, and proceeding along the same line of deductive reasoning, one finds:

  • Expressions for the four coefficients, <math>~a, b, c, d</math>, remain unchanged.
  • The coefficient is zero for all other terms that contain odd powers of <math>~\xi</math>; specifically, for example, <math>~e = g = 0</math>.
  • The coefficients of <math>~\xi^6</math> and <math>~\xi^8</math> are, respectively,

<math>~f</math>

<math>~=</math>

<math>~- \frac{n}{378}\biggl(\frac{n}{5}-\frac{1}{8} \biggr) \, ;</math>

<math>~h</math>

<math>~=</math>

<math>~\frac{n(122n^2 -183n + 70)}{3265920} \, .</math>


In summary, the desired, approximate power-series expression for the polytropic Lane-Emden function is:

<math>~\theta</math>

<math>~=</math>

<math>~ 1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 - \frac{n}{378} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^6 + \biggl[ \frac{n(122n^2 -183n + 70)}{3265920} \biggr] \xi^8 + \cdots </math>

Isothermal Lane-Emden Function

We seek a power-series expression for the isothermal, Lane-Emden function, <math>~w(r)</math> — expanded about the coordinate center, <math>~r = 0</math> — that approximately satisfies the isothermal Lane-Emden equation,

<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} </math>

<math>~=</math>

<math>~e^{-w} \, . </math>

A general power-series should be of the form,

<math>~w</math>

<math>~=</math>

<math>~ w_0 + ar + br^2 + cr^3 + dr^4 + er^5 + fr^6 + gr^7 + hr^8 +\cdots </math>


Result:

<math>~w(r) </math>

<math>~=</math>

<math>~\frac{r^2}{6} - \frac{r^4}{120} + \frac{r^6}{1890} + \cdots \, .</math>


See also:

  • Equation (377) from §22 in Chapter IV of C67).

Displacement Function for Polytropic LAWE

Displacement Function for Isothermal LAWE

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation