Difference between revisions of "User:Tohline/Appendix/Ramblings/Hybrid Scheme Implications"

From VistrailsWiki
Jump to navigation Jump to search
Line 143: Line 143:
==Exercising the Hybrid Scheme==
==Exercising the Hybrid Scheme==


Focusing on the advection term that appears on the left-hand-side of this last expression, let's replace the second reference to the rotating-frame velocity with its equivalent expression in terms of the inertial-frame velocityThat is, let's set …
Let's begin by using <math>~{\bold{u}}'</math>, instead of <math>~{\vec{v}}_\mathrm{rot}</math>, to represent the fluid velocity vector as viewed from the rotating frame of referenceOur foundation expression becomes,
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~({\vec{v}}_\mathrm{rot}\cdot \nabla) {\vec{v}}_\mathrm{rot}</math>
<math>~\frac{d \bold{u}'}{dt}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 154: Line 156:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~- \frac{1}{\rho} \nabla P - \nabla \Phi 
({\vec{v}}_\mathrm{rot}\cdot \nabla) [\vec{v}_\mathrm{inertial} - {\vec\Omega}_f \times \vec{x} ]\, .
- 2{\vec\Omega}_f \times \bold{u}'
</math>
- {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>


Next, using [Ref03] as a guide, let's [[User:Tohline/Appendix/Ramblings/Hybrid_Scheme_old#Focus_on_Tracking_Angular_Momentum|focus on tracking angular momentum]].  We need to break the vector momentum equation, as well as the velocity vectors, into their <math>~(\bold{\hat{e}}_\varpi, \bold{\hat{e}}_\varphi, \bold{\hat{k}})</math> components.
<table border="1" cellpadding="10" align="center" width="80%"><tr><td align="left">
NOTE:  For the time being, we will write the velocity vector in terms of generic components, namely,
<div align="center">
<math>~\bold{u}' = \bold{\hat{e}}_\varpi u'_\varpi +  \bold{\hat{e}}_\varphi u'_\varphi +  \bold{\hat{k}}u'_z \, .</math>
</div>
But, eventually, we want to explicitly insert the rotating-frame velocity that underpins the equilibrium properties of Riemann S-type ellipsoids.  In Chap. 7, &sect;47, Eq. 1 (p. 130) of [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>], this is given in Cartesian coordinates, so we will need to convert his expressions to the equivalent cylindrical-coordinate components.
</td></tr></table>




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 23:10, 26 August 2020

Implications of Hybrid Scheme

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Background

Key H_Book Chapters

[Ref01]   Inertial-Frame Euler Equation

[Ref02]   Traditional Description of Rotating Reference Frame

[Ref03]   Hybrid Advection Scheme

[Ref04]   Riemann S-type Ellipsoids

[Ref05]   Korycansky and Papaloizou (1996)

Principal Governing Equations

Quoting from [Ref01] … Among the principal governing equations we have included the inertial-frame,

Lagrangian Representation
of the Euler Equation,

LSU Key.png

<math>\frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math>

[EFE], Chap. 2, §11, p. 20, Eq. (38)
[BLRY07], p. 13, Eq. (1.55)

Shifting into a rotating frame characterized by the angular velocity vector,

<math>~\vec{\Omega}_f \equiv \hat\mathbf{k} \Omega_f \, ,</math>

and applying the operations that are specified in the first few subsections of [Ref02], we recognize the following relationships …

<math>~\vec{v}_\mathrm{inertial}</math>

<math>~=</math>

<math>~\vec{v}_\mathrm{rot} + {\vec\Omega}_f \times \vec{x} \, ,</math>

<math>~\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{inertial}</math>

<math>~=</math>

<math>~ \biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} + {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{\partial \vec{v}}{\partial t} \biggr]_\mathrm{rot} + ({\vec{v}}_\mathrm{rot} \cdot \nabla){\vec{v}}_\mathrm{rot} + 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - \frac{1}{2} \nabla | {\vec\Omega}_f \times \vec{x}|^2 \, .</math>

Making this substitution on the left-hand-side of the above-specified "Lagrangian Representation of the Euler Equation," we obtain what we have referred to also in [Ref02] as the,

Eulerian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame

<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_\mathrm{rot} + ({\vec{v}}_\mathrm{rot}\cdot \nabla) {\vec{v}}_\mathrm{rot}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi - \frac{1}{2}|{\vec{\Omega}}_f \times \vec{x}|^2 \biggr] - 2{\vec{\Omega}}_f \times {\vec{v}}_\mathrm{rot} \, .</math>

This form of the Euler equation also appears early in [Ref05], where we set up a discussion of the paper by Korycansky & Papaloizou (1996, ApJS, 105, 181; hereafter KP96). But, for now, let's back up a couple of steps and retain the total time derivative on the left-hand-side. That is, let's select as the foundation expression the,

Lagrangian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame

<math>~\biggl[ \frac{d \vec{v}}{dt} \biggr]_\mathrm{rot} </math>

<math>~=</math>

<math>~- \frac{1}{\rho} \nabla P - \nabla \Phi - 2{\vec\Omega}_f \times {\vec{v}}_\mathrm{rot} - {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) \, ,</math>

[EFE], Chap. 2, §12, p. 25, Eq. (62)

which also serves as the foundation of most of our [Ref03] discussions.

Exercising the Hybrid Scheme

Let's begin by using <math>~{\bold{u}}'</math>, instead of <math>~{\vec{v}}_\mathrm{rot}</math>, to represent the fluid velocity vector as viewed from the rotating frame of reference. Our foundation expression becomes,

<math>~\frac{d \bold{u}'}{dt} </math>

<math>~=</math>

<math>~- \frac{1}{\rho} \nabla P - \nabla \Phi - 2{\vec\Omega}_f \times \bold{u}' - {\vec\Omega}_f \times ({\vec\Omega}_f \times \vec{x}) </math>

Next, using [Ref03] as a guide, let's focus on tracking angular momentum. We need to break the vector momentum equation, as well as the velocity vectors, into their <math>~(\bold{\hat{e}}_\varpi, \bold{\hat{e}}_\varphi, \bold{\hat{k}})</math> components.

NOTE: For the time being, we will write the velocity vector in terms of generic components, namely,

<math>~\bold{u}' = \bold{\hat{e}}_\varpi u'_\varpi + \bold{\hat{e}}_\varphi u'_\varphi + \bold{\hat{k}}u'_z \, .</math>

But, eventually, we want to explicitly insert the rotating-frame velocity that underpins the equilibrium properties of Riemann S-type ellipsoids. In Chap. 7, §47, Eq. 1 (p. 130) of [EFE], this is given in Cartesian coordinates, so we will need to convert his expressions to the equivalent cylindrical-coordinate components.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation