Difference between revisions of "User:Tohline/Appendix/Ramblings/EllipticCylinderCoordinates"

From VistrailsWiki
Jump to navigation Jump to search
Line 7: Line 7:
Building on our [[User:Tohline/Appendix/Ramblings/DirectionCosines|general introduction to ''Direction Cosines'']] in the context of orthogonal curvilinear coordinate systems, here we detail the properties of [https://en.wikipedia.org/wiki/Elliptic_cylindrical_coordinates Elliptic Cylinder Coordinates].  First, we will present this coordinate system in the manner described by [<b>[[User:Tohline/Appendix/References#MF53|<font color="red">MF53</font>]]</b>]; second, we will provide an alternate presentation, obtained from Wikipedia; then, third, we will investigate whether or not a related coordinate system based on ''concentric'' (rather than ''confocal'') elliptic surfaces can be satisfactorily described.
Building on our [[User:Tohline/Appendix/Ramblings/DirectionCosines|general introduction to ''Direction Cosines'']] in the context of orthogonal curvilinear coordinate systems, here we detail the properties of [https://en.wikipedia.org/wiki/Elliptic_cylindrical_coordinates Elliptic Cylinder Coordinates].  First, we will present this coordinate system in the manner described by [<b>[[User:Tohline/Appendix/References#MF53|<font color="red">MF53</font>]]</b>]; second, we will provide an alternate presentation, obtained from Wikipedia; then, third, we will investigate whether or not a related coordinate system based on ''concentric'' (rather than ''confocal'') elliptic surfaces can be satisfactorily described.


It is useful to keep in mind various properties of a set of ''confocal ellipses'' in which the location of the pair of foci is fixed at, <math>~(x, y) = (\pm~ c, 0)</math>, and the semi-major axis, <math>~a</math>, is the parameter.  The relevant prescriptive relation is,
It is useful to keep in mind various properties of a set of ''[https://en.wikipedia.org/wiki/Confocal_conic_sections#Confocal_ellipses confocal ellipses]'' in which the location of the pair of foci is fixed at, <math>~(x, y) = (\pm~ c, 0)</math>, and the semi-major axis, <math>~a</math>, is the parameter.  The relevant prescriptive relation is,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">



Revision as of 19:23, 15 October 2020

Elliptic Cylinder Coordinates

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, here we detail the properties of Elliptic Cylinder Coordinates. First, we will present this coordinate system in the manner described by [MF53]; second, we will provide an alternate presentation, obtained from Wikipedia; then, third, we will investigate whether or not a related coordinate system based on concentric (rather than confocal) elliptic surfaces can be satisfactorily described.

It is useful to keep in mind various properties of a set of confocal ellipses in which the location of the pair of foci is fixed at, <math>~(x, y) = (\pm~ c, 0)</math>, and the semi-major axis, <math>~a</math>, is the parameter. The relevant prescriptive relation is,

<math>~1</math>

<math>~=</math>

<math>~\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2}</math>      for,   <math>~a > c\, .</math>


MF53

Definition

From MF53's Table of Separable Coordinates in Three Dimensions (see their Chapter 5, beginning on p. 655), we find the following description of Elliptic Cylinder Coordinates (p. 657).

<math>~x</math>

<math>~=</math>

<math>~\xi_1 \xi_2 \, ;</math>

<math>~y</math>

<math>~=</math>

<math>~\biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{1 / 2} \, ;</math>

<math>~z</math>

<math>~=</math>

<math>~\xi_3 \, .</math>

Scale Factors

Appreciating that,

<math>~\frac{\partial y}{\partial \xi_1}</math>

<math>~=</math>

<math>~ +\biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 / 2}\xi_1(1-\xi_2^2) \, , </math>       and that,

<math>~\frac{\partial y}{\partial \xi_2}</math>

<math>~=</math>

<math>~ - \biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 / 2}\xi_2(\xi_1^2 - d^2) \, , </math>

we find that the respective scale factors are given by the expressions,

<math>~ h_1^2</math>

<math>~=</math>

<math>~\biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 </math>

 

<math>~=</math>

<math>~\xi_2^2 +\biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 }\xi_1^2 (1-\xi_2^2)^2 </math>

 

<math>~=</math>

<math>~ (\xi_1^2 - d^2)^{- 1 } [ (\xi_1^2 - d^2)\xi_2^2 +\xi_1^2 (1-\xi_2^2) ]</math>

 

<math>~=</math>

<math>~ \biggl[ \frac{ \xi_1^2 - d^2 \xi_2^2 }{\xi_1^2 - d^2} \biggr] \, ;</math>

<math>~ h_2^2</math>

<math>~=</math>

<math>~\biggl(\frac{\partial x}{\partial\xi_2} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_2} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_2} \biggr)^2 </math>

 

<math>~=</math>

<math>~\xi_1^2 + \biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 }\xi_2^2(\xi_1^2 - d^2)^2 </math>

 

<math>~=</math>

<math>~(1 - \xi_2^2)^{- 1 } [\xi_1^2(1 - \xi_2^2) + \xi_2^2(\xi_1^2 - d^2) ]</math>

 

<math>~=</math>

<math>~\biggl[ \frac{ \xi_1^2 - d^2 \xi_2^2 }{1 - \xi_2^2} \biggr] \, ;</math>

<math>~ h_3^2</math>

<math>~=</math>

<math>~\biggl(\frac{\partial x}{\partial\xi_3} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_3} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_3} \biggr)^2 </math>

 

<math>~=</math>

<math>~1 \, . </math>

These match the scale-factor expressions found in MF53.

Inverting Coordinate Mapping

Inverting the original coordinate mappings, we find,

<math>~y^2</math>

<math>~=</math>

<math>~(\xi_1^2 - d^2)\biggl[ 1 - \biggl(\frac{x}{\xi_1}\biggr)^2 \biggr] </math>

<math>~\Rightarrow ~~~0</math>

<math>~=</math>

<math>~(\xi_1^2 - d^2) ( \xi_1^2 - x^2 ) - \xi_1^2 y^2</math>

 

<math>~=</math>

<math>~(\xi_1^2 - d^2) \xi_1^2 - (\xi_1^2 - d^2) x^2 - \xi_1^2 y^2</math>

 

<math>~=</math>

<math>~ \xi_1^4 - \xi_1^2 (d^2 + x^2 + y^2) + d^2 x^2 </math>

<math>~\Rightarrow~~~ \xi_1^2</math>

<math>~=</math>

<math>~ \frac{1}{2}\biggl\{ -(d^2 + x^2 + y^2) \pm \biggl[ (d^2 + x^2 + y^2)^2 + 4d^2 x^2 \biggr]^{1 / 2} \biggr\} </math>

Only the superior — that is, only the positive — sign will ensure positive values of <math>~\xi_1^2</math>, so in summary we have,

Coordinate Transformation

<math>~\xi_1</math>

<math>~=</math>

<math>~ \frac{1}{\sqrt{2}}\biggl\{ \biggl[ (d^2 + x^2 + y^2)^2 + 4d^2 x^2\biggr]^{1 / 2} -(d^2 + x^2 + y^2) \biggr\}^{1 / 2} \, ; </math>

<math>~\xi_2</math>

<math>~=</math>

<math>~ \frac{x}{\xi_1} \, ; </math>

<math>~\xi_3</math>

<math>~=</math>

<math>~ z \, . </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation