Difference between revisions of "User:Tohline/Appendix/Ramblings/EllipticCylinderCoordinates"

From VistrailsWiki
Jump to navigation Jump to search
Line 205: Line 205:
</tr>
</tr>
</table>
</table>
These match the scale-factor expressions found in [[User:Tohline/Appendix/References#MF53|MF53]].  Inverting the original coordinate mappings, we find,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~y^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(\xi_1^2 - d^2)\biggl[ 1 - \biggl(\frac{x}{\xi_1}\biggr)^2 \biggr] </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(\xi_1^2 - d^2) ( \xi_1^2 - x^2 ) - \xi_1^2 y^2</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(\xi_1^2 - d^2) \xi_1^2  - (\xi_1^2 - d^2) x^2  - \xi_1^2 y^2</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\xi_1^4  - \xi_1^2 (d^2 + x^2  + y^2) + d^2 x^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~ \xi_1^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{2}\biggl\{
-(d^2 + x^2 + y^2) \pm \biggl[ (d^2 + x^2 + y^2)^2 + 4d^2 x^2 \biggr]^{1 / 2}
\biggr\}
</math>
  </td>
</tr>
</table>
Only the ''superior'' &#8212; that is, only the ''positive'' &#8212; sign will ensure positive values of <math>~\xi_1^2</math>, so in summary we have,
<table border="1" width="80%" align="center" cellpadding="10"><tr><td align="left">
<table border="0" cellpadding="5" align="center">
<tr><td align="center" colspan="3">'''Coordinate Transformation'''</td></tr>
<tr>
  <td align="right">
<math>~\xi_1</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{\sqrt{2}}\biggl\{
\biggl[ (d^2 + x^2 + y^2)^2 + 4d^2 x^2\biggr]^{1 / 2} -(d^2 + x^2 + y^2)
\biggr\}^{1 / 2} \, ;
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\xi_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{x}{\xi_1} \, ;
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\xi_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
z \, .
</math>
  </td>
</tr>
</table>
</td></tr></table>


=See Also=
=See Also=

Revision as of 17:41, 15 October 2020

Elliptic Cylinder Coordinates

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, here we detail the properties of Elliptic Cylinder Coordinates. First, we will present this coordinate system in the manner described by [MF53]; second, we will provide an alternate presentation, obtained from Wikipedia; then, third, we will investigate whether or not a related coordinate system based on concentric (rather than confocal) elliptic surfaces can be satisfactorily described.

MF53

From MF53's Table of Separable Coordinates in Three Dimensions (see their Chapter 5, beginning on p. 655), we find the following description of Elliptic Cylinder Coordinates (p. 657).

<math>~x</math>

<math>~=</math>

<math>~\xi_1 \xi_2 \, ;</math>

<math>~y</math>

<math>~=</math>

<math>~\biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{1 / 2} \, ;</math>

<math>~z</math>

<math>~=</math>

<math>~\xi_3 \, .</math>

Appreciating that,

<math>~\frac{\partial y}{\partial \xi_1}</math>

<math>~=</math>

<math>~ +\biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 / 2}\xi_1(1-\xi_2^2) \, , </math>       and that,

<math>~\frac{\partial y}{\partial \xi_2}</math>

<math>~=</math>

<math>~ - \biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 / 2}\xi_2(\xi_1^2 - d^2) \, , </math>

we find that the respective scale factors are given by the expressions,

<math>~ h_1^2</math>

<math>~=</math>

<math>~\biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 </math>

 

<math>~=</math>

<math>~\xi_2^2 +\biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 }\xi_1^2 (1-\xi_2^2)^2 </math>

 

<math>~=</math>

<math>~ (\xi_1^2 - d^2)^{- 1 } [ (\xi_1^2 - d^2)\xi_2^2 +\xi_1^2 (1-\xi_2^2) ]</math>

 

<math>~=</math>

<math>~ \biggl[ \frac{ \xi_1^2 - d^2 \xi_2^2 }{\xi_1^2 - d^2} \biggr] \, ;</math>

<math>~ h_2^2</math>

<math>~=</math>

<math>~\biggl(\frac{\partial x}{\partial\xi_2} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_2} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_2} \biggr)^2 </math>

 

<math>~=</math>

<math>~\xi_1^2 + \biggl[ (\xi_1^2 - d^2)(1 - \xi_2^2) \biggr]^{- 1 }\xi_2^2(\xi_1^2 - d^2)^2 </math>

 

<math>~=</math>

<math>~(1 - \xi_2^2)^{- 1 } [\xi_1^2(1 - \xi_2^2) + \xi_2^2(\xi_1^2 - d^2) ]</math>

 

<math>~=</math>

<math>~\biggl[ \frac{ \xi_1^2 - d^2 \xi_2^2 }{1 - \xi_2^2} \biggr] \, ;</math>

<math>~ h_3^2</math>

<math>~=</math>

<math>~\biggl(\frac{\partial x}{\partial\xi_3} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_3} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_3} \biggr)^2 </math>

 

<math>~=</math>

<math>~1 \, . </math>

These match the scale-factor expressions found in MF53. Inverting the original coordinate mappings, we find,

<math>~y^2</math>

<math>~=</math>

<math>~(\xi_1^2 - d^2)\biggl[ 1 - \biggl(\frac{x}{\xi_1}\biggr)^2 \biggr] </math>

<math>~\Rightarrow ~~~0</math>

<math>~=</math>

<math>~(\xi_1^2 - d^2) ( \xi_1^2 - x^2 ) - \xi_1^2 y^2</math>

 

<math>~=</math>

<math>~(\xi_1^2 - d^2) \xi_1^2 - (\xi_1^2 - d^2) x^2 - \xi_1^2 y^2</math>

 

<math>~=</math>

<math>~ \xi_1^4 - \xi_1^2 (d^2 + x^2 + y^2) + d^2 x^2 </math>

<math>~\Rightarrow~~~ \xi_1^2</math>

<math>~=</math>

<math>~ \frac{1}{2}\biggl\{ -(d^2 + x^2 + y^2) \pm \biggl[ (d^2 + x^2 + y^2)^2 + 4d^2 x^2 \biggr]^{1 / 2} \biggr\} </math>

Only the superior — that is, only the positive — sign will ensure positive values of <math>~\xi_1^2</math>, so in summary we have,

Coordinate Transformation

<math>~\xi_1</math>

<math>~=</math>

<math>~ \frac{1}{\sqrt{2}}\biggl\{ \biggl[ (d^2 + x^2 + y^2)^2 + 4d^2 x^2\biggr]^{1 / 2} -(d^2 + x^2 + y^2) \biggr\}^{1 / 2} \, ; </math>

<math>~\xi_2</math>

<math>~=</math>

<math>~ \frac{x}{\xi_1} \, ; </math>

<math>~\xi_3</math>

<math>~=</math>

<math>~ z \, . </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation