Difference between revisions of "User:Tohline/Appendix/Ramblings/Dyson1893Part1"

From VistrailsWiki
Jump to navigation Jump to search
Line 8: Line 8:
In his pioneering work, [http://adsabs.harvard.edu/abs/1893RSPTA.184...43D F. W. Dyson (1893a, Philosophical Transactions of the Royal Society of London. A., 184, 43 - 95)] and [http://adsabs.harvard.edu/abs/1893RSPTA.184.1041D (1893b, Philosophical Transactions of the Royal Society of London. A., 184, 1041 - 1106)] used analytic techniques to determine the approximate equilibrium structure of axisymmetric, uniformly rotating, incompressible tori.  [http://adsabs.harvard.edu/abs/1974ApJ...190..675W C.-Y. Wong (1974, ApJ, 190, 675 - 694)] extended Dyson's work, using numerical techniques to obtain more accurate — but still approximate — equilibrium structures for incompressible tori having solid body rotation.  Since then, [http://adsabs.harvard.edu/abs/1981PThPh..65.1870E Y. Eriguchi & D. Sugimoto (1981, Progress of Theoretical Physics, 65, 1870 - 1875)] and [http://adsabs.harvard.edu/abs/1988ApJS...66..315H I. Hachisu, J. E. Tohline & Y. Eriguchi (1987, ApJ, 323, 592 - 613)] have mapped out the full sequence of Dyson-Wong tori, beginning from a bifurcation point on the Maclaurin spheroid sequence.
In his pioneering work, [http://adsabs.harvard.edu/abs/1893RSPTA.184...43D F. W. Dyson (1893a, Philosophical Transactions of the Royal Society of London. A., 184, 43 - 95)] and [http://adsabs.harvard.edu/abs/1893RSPTA.184.1041D (1893b, Philosophical Transactions of the Royal Society of London. A., 184, 1041 - 1106)] used analytic techniques to determine the approximate equilibrium structure of axisymmetric, uniformly rotating, incompressible tori.  [http://adsabs.harvard.edu/abs/1974ApJ...190..675W C.-Y. Wong (1974, ApJ, 190, 675 - 694)] extended Dyson's work, using numerical techniques to obtain more accurate — but still approximate — equilibrium structures for incompressible tori having solid body rotation.  Since then, [http://adsabs.harvard.edu/abs/1981PThPh..65.1870E Y. Eriguchi & D. Sugimoto (1981, Progress of Theoretical Physics, 65, 1870 - 1875)] and [http://adsabs.harvard.edu/abs/1988ApJS...66..315H I. Hachisu, J. E. Tohline & Y. Eriguchi (1987, ApJ, 323, 592 - 613)] have mapped out the full sequence of Dyson-Wong tori, beginning from a bifurcation point on the Maclaurin spheroid sequence.


==External Potential==
==External Potential in Terms of Angle ψ==


===Step 1===
===Step 1===

Revision as of 22:18, 19 September 2018

Dyson (1893a) Part I: Some Details

This chapter provides some derivation details relevant to our accompanying discussion of Dyson's analysis of the gravitational potential exterior to an anchor ring.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Overview

In his pioneering work, F. W. Dyson (1893a, Philosophical Transactions of the Royal Society of London. A., 184, 43 - 95) and (1893b, Philosophical Transactions of the Royal Society of London. A., 184, 1041 - 1106) used analytic techniques to determine the approximate equilibrium structure of axisymmetric, uniformly rotating, incompressible tori. C.-Y. Wong (1974, ApJ, 190, 675 - 694) extended Dyson's work, using numerical techniques to obtain more accurate — but still approximate — equilibrium structures for incompressible tori having solid body rotation. Since then, Y. Eriguchi & D. Sugimoto (1981, Progress of Theoretical Physics, 65, 1870 - 1875) and I. Hachisu, J. E. Tohline & Y. Eriguchi (1987, ApJ, 323, 592 - 613) have mapped out the full sequence of Dyson-Wong tori, beginning from a bifurcation point on the Maclaurin spheroid sequence.

External Potential in Terms of Angle ψ

Step 1

On p. 59, at the end of §6 of Dyson (1893a), we find the following expression for the potential at point "P", anywhere exterior to an anchor ring:

<math>~\frac{\pi V(r,\theta)}{M}</math>

<math>~=</math>

<math>~ \mathfrak{I}(r,\theta,c) ~+~ \frac{a^2}{2^3} ~\frac{1}{c} \cdot \frac{d}{dc} \biggl[ \mathfrak{I}(r,\theta,c)\biggr] ~-~ \frac{a^4}{2^6\cdot 3} ~\frac{1}{c} \cdot \frac{d}{dc} \biggl\{ \frac{1}{c} \cdot \frac{d}{dc} \biggl[ \mathfrak{I}(r,\theta,c)\biggr]\biggr\} ~+~\cdots </math>

 

 

<math>~ ~+~(-1)^{n+1} \frac{2a^{2n}}{2n+2} \biggl[ \frac{1\cdot 3\cdot 5 \cdots (2n-3)}{2^2\cdot 4^2\cdot 6^2\cdots(2n)^2} \biggr] \biggl( \frac{1}{c}\cdot \frac{d}{dc}\biggr)^n \biggl[ \mathfrak{I}(r,\theta,c)\biggr] ~+~ \cdots </math>

where (see beginning of §8 on p. 61),

Anchor Ring Schematic

Caption: Anchor ring schematic, adapted from figure near the top of §2 (on p. 47) of Dyson (1893a)

<math>~\mathfrak{I}(r,\theta,c)</math>

<math>~\equiv</math>

<math>~ \int_0^\pi d\phi \biggl[r^2 - 2cr\sin\theta \cos\phi +c^2\biggr]^{-1 / 2} </math>

 

<math>~=</math>

<math>~ 2\int_0^{\pi/2} d\phi \biggl[ R_1^2 - (R_1^2-R^2)\sin^2\phi \biggr]^{-1 / 2} </math>

 

<math>~=</math>

<math>~ \frac{2}{R_1}\int_0^{\pi/2} d\phi \biggl[ 1 - \biggl( \frac{R_1^2-R^2}{R_1^2}\biggr) \sin^2\phi \biggr]^{-1 / 2} </math>

 

<math>~=</math>

<math>~ \frac{2K(k)}{R_1} \, , </math>

and, where furthermore,

<math>~K(k)</math>

<math>~=</math>

<math>~ \int_0^{\pi/2} d\phi \biggl[1 - k^2\sin^2\phi \bigg]^{-1 / 2} </math>

      and      

<math>~k</math>

<math>~\equiv</math>

<math>~ \biggl[ \frac{R_1^2-R^2}{R_1^2} \biggr]^{1 / 2} \, . </math>

Step 2

Taking a queue from our accompanying discussion of toroidal coordinates, if we adopt the variable notation,

<math>~\eta \equiv \ln\biggl(\frac{R_1}{R}\biggr) \, ,</math>

then we can write,

<math>~\cosh\eta = \frac{1}{2}\biggl[e^\eta + e^{-\eta}\biggr]</math>

<math>~=</math>

<math>~\frac{R^2 + R_1^2}{2RR_1} \, ,</math>

which implies that,

<math>~\biggl[ \frac{2}{\coth\eta +1} \biggr]^{1 / 2} = [1 - e^{-2\eta}]^{1 / 2}</math>

<math>~=</math>

<math>~\biggl[ 1 - \biggl(\frac{R}{R_1}\biggr)^2 \biggr]^{1 / 2} = k \, .</math>

Now, if we employ the Descending Landen Transformation for the complete elliptic integral of the first kind, we can make the substitution,

<math>~K(k)</math>

<math>~=</math>

<math>~ (1 + \mu)K(\mu) \, , </math>

      where,      

<math>~\mu</math>

<math>~\equiv</math>

<math>~ \frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}} \, . </math>

But notice that, <math>~\sqrt{1-k^2} = e^{-\eta}</math>, in which case,

<math>~\mu </math>

<math>~=</math>

<math>~ \frac{1-e^{-\eta}}{1+e^{-\eta}} </math>

<math>~=</math>

<math>~ \frac{1-R/R_1}{1+R/R_1} </math>

<math>~=</math>

<math>~ \frac{R_1-R}{R_1+R} \, . </math>

Hence, we can write,

<math>~\mathfrak{I}(r,\theta,c) = \frac{2K(k)}{R_1}</math>

<math>~=</math>

<math>~ \frac{2}{R_1} \biggl[(1+\mu)K(\mu) \biggr] </math>

 

<math>~=</math>

<math>~\frac{2K(\mu)}{R_1} \biggl[1+\frac{R_1-R}{R_1+R} \biggr] </math>

 

<math>~=</math>

<math>~\frac{4K(\mu)}{R_1+R} \, .</math>

This is the expression for <math>~\mathfrak{I}(r,\theta,c) </math> that was adopted by Dyson at the beginning of his §8.

Step 3

Subsequently, Dyson was able to obtain analytic expressions for successive derivatives of the function, <math>~\mathfrak{I}(r,\theta,c) </math>, by first demonstrating that

Comment by J. E. Tohline on 17 September 2018: In the middle of p. 61 of Dyson(1893a), there appears to be a typographical error in the expression for the derivative of R1 with respect to c; as we have indicated here, the numerator should be 4cR1 instead of 4cR.

<math>~\frac{dR}{dc}</math>

<math>~=</math>

<math>~\frac{4c^2 + R^2 - R_1^2}{4cR} \, ,</math>

<math>~\frac{dR_1}{dc}</math>

<math>~=</math>

<math>~\frac{4c^2 + R_1^2 - R^2}{4cR_1} \, ,</math>       and,

<math>~\frac{d\mu}{dc}</math>

<math>~=</math>

<math>~\frac{\mu}{c} \cos\psi \, ,</math>

where — as shown above in the Anchor ring schematic — <math>~\psi</math> is the angle between <math>~R</math> and <math>~R_1</math> for which (according to the law of cosines),

<math>~\cos\psi</math>

<math>~=</math>

<math>~\frac{R^2 + R_1^2 - 4c^2}{2RR_1} \, .</math>

It will be useful for us to note that,

<math>~\frac{d(\cos\psi)}{dc}</math>

<math>~=</math>

<math>~ \frac{d}{dc}\biggl[ \frac{R^2 + R_1^2 - 4c^2}{2RR_1} \biggr] </math>

 

<math>~=</math>

<math>~ \frac{1}{2RR_1}\frac{d}{dc}\biggl[ R^2 + R_1^2 - 4c^2 \biggr] ~+~(R^2 + R_1^2 - 4c^2) \frac{d}{dc}\biggl[ \frac{1}{2RR_1} \biggr] </math>

 

<math>~=</math>

<math>~ \frac{1}{2RR_1}\biggl[2R\frac{dR}{dc} + 2R_1\frac{dR_1}{dc} - 8c \biggr] ~+~(R^2 + R_1^2 - 4c^2)\biggl[ - \frac{1}{2R^2R_1} \frac{dR}{dc} - \frac{1}{2RR_1^2}\frac{dR_1}{dc} \biggr] </math>

 

<math>~=</math>

<math>~ \frac{1}{4cRR_1}\biggl[ 4c^2 + R^2 - R_1^2 + 4c^2 + R_1^2 - R^2 - 2^4c^2 \biggr] ~-~(R^2 + R_1^2 - 4c^2)\biggl\{ \biggl[ \frac{4c^2 + R^2 - R_1^2}{8cR^3R_1}\biggr] + \biggl[ \frac{4c^2 + R_1^2 - R^2}{8cR_1^3 R} \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ -~\frac{2c}{RR_1} ~-~\frac{\cos\psi}{4cR^2 R_1^2} \biggl[4c^2(R_1^2 + R^2) + 2R_1^2 R^2 - R_1^4 - R^4 \biggr] </math>

 

<math>~=</math>

<math>~ \frac{\cos\psi}{4cR^2 R_1^2} \biggl[ R_1^4 + R^4- 4c^2(R_1^2 + R^2) - 2R_1^2 R^2 \biggr] -~\frac{2c}{RR_1} </math>

 

<math>~=</math>

<math>~\frac{1}{4cR^2 R_1^2}\biggl\{ \cos\psi [R_1^4 + R^4 - 2R_1^2 R^2 - 4c^2(R_1^2 + R^2) ] -~8c^2R R_1 \biggr\} </math>

But,

<math>~[R_1^4 + R^4 - 2R_1^2 R^2 - 4c^2(R_1^2 + R^2)]</math>

<math>~=</math>

<math>~ (R_1^2 - R^2)^2 - 4c^2(R_1^2 + R^2) </math>

 

<math>~=</math>

<math>~ [(R_1+R)(R_1-R)]^2 - 4c^2(R_1^2 + R^2) </math>

 

<math>~=</math>

<math>~ (R_1^2 + 2R_1 R +R^2)(R_1-R)^2 - 4c^2(R_1^2 + R^2) </math>

 

<math>~=</math>

<math>~ 2R_1 R(R_1-R)^2 +(R_1^2 + R^2)(R_1-R)^2 - 4c^2(R_1^2 + R^2) </math>

 

<math>~=</math>

<math>~ 2R_1 R(R_1-R)^2 +(R_1^2 + R^2)[R_1^2 -2R_1 R + R^2 - 4c^2] </math>

 

<math>~=</math>

<math>~ 2R_1 R[ (R_1-R)^2 +(R_1^2 + R^2)(\cos\psi - 1)] </math>

 

<math>~=</math>

<math>~ 2R_1 R[ (R_1^2 + R^2)\cos\psi - 2R_1 R] </math>

 

<math>~=</math>

<math>~ (2R_1 R)^2 \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr] </math>

Hence,

<math>~ \frac{d(\cos\psi)}{dc} </math>

<math>~=</math>

<math>~\frac{(2R_1 R)^2 }{4cR^2 R_1^2}\biggl\{ \cos\psi \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr] -~\frac{8c^2R R_1}{(2R_1 R)^2 } \biggr\} </math>

 

<math>~=</math>

<math>~\frac{1}{c}\biggl\{ \cos\psi \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr] -~\frac{2c^2}{R_1 R } \biggr\} </math>

<math>~ \Rightarrow ~~~ 2c\cdot \frac{d(\cos\psi)}{dc} </math>

<math>~=</math>

<math>~ 2\cos\psi \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr] -~\frac{4c^2}{R_1 R } </math>

Step 4

Then, drawing upon known expressions for the derivatives of elliptic integrals, as are now tidily catalogued online in NIST's Digital Library of Mathematical Functions, Dyson showed that,


LaTeX mathematical expressions cut-and-pasted directly from
NIST's Digital Library of Mathematical Functions

According to §19.4 of NIST's Digital Library of Mathematical Functions,

<math>~\frac{\mathrm{d}K\left(k\right)}{\mathrm{d}k}</math>

<math>~=</math>

<math>~ \frac{E\left(k\right)-{k^{\prime}}^{2}K\left(k\right)}{k{k^{\prime}}^{2}}, </math>

<math>~\frac{\mathrm{d}(E\left(k\right)-{k^{\prime}}^{2}K\left(k\right))}{\mathrm{d}k}</math>

<math>~=</math>

<math>~ kK\left(k\right), </math>

<math>~\frac{\mathrm{d}E\left(k\right)}{\mathrm{d}k}</math>

<math>~=</math>

<math>~ \frac{E\left(k\right)-K\left(k\right)}{k}, </math>

<math>~\frac{\mathrm{d}(E\left(k\right)-K\left(k\right))}{\mathrm{d}k}</math>

<math>~=</math>

<math>~ -\frac{kE\left(k\right)}{{k^{\prime}}^{2}}, </math>

<math>~\frac{{\mathrm{d}}^{2}E\left(k\right)}{{\mathrm{d}k}^{2}}</math>

<math>~=</math>

<math>~ -\frac{1}{k}\frac{\mathrm{d}K\left(k\right)}{\mathrm{d}k}=\frac{{k^{\prime}}^{2}K\left(k\right)-E\left(k\right)}{k^{2}{k^{\prime}}^{2}} \, , </math>

where,

<math>~k^{\prime} \equiv \sqrt{1 - k^2} \, .</math>


<math>~\frac{d\mathfrak{I}(r,\theta,c)}{dc} = \frac{d}{dc}\biggl[\frac{4K(\mu)}{R_1+R}\biggr]</math>

<math>~=</math>

<math>~ 4K(\mu) \frac{d}{dc}\biggl[ R_1 + R \biggr]^{-1} + \frac{4}{(R_1+R)} \biggl[ \frac{E\left(\mu\right)-{\mu^{\prime}}^{2}K\left(\mu\right)}{\mu{\mu^{\prime}}^{2}} \biggr]\frac{d\mu}{dc} </math>

 

<math>~=</math>

<math>~ -~\frac{4K(\mu)}{(R_1+R)^2} \biggl[ \frac{dR_1}{dc} + \frac{dR}{dc} \biggr] ~-~ \frac{4}{(R_1+R)} \biggl[ \frac{K\left(\mu\right)}{\mu} \biggr]\frac{\mu}{c}\cos\psi + \frac{4}{(R_1+R)} \biggl[ \frac{E\left(\mu\right)}{\mu{\mu^{\prime}}^{2}} \biggr]\frac{\mu}{c}\cos\psi </math>

 

<math>~=</math>

<math>~ -~\frac{4K(\mu)}{(R_1+R)^2} \biggl[ \frac{4c^2 + R_1^2 - R^2}{4cR_1} + \frac{4c^2 + R^2 - R_1^2}{4cR} \biggr] ~-~ \biggl[ \frac{4K\left(\mu\right)}{c(R_1+R)} \biggr] \cos\psi + \frac{4E\left(\mu\right)}{c(R_1+R)} \biggl[ \frac{(R_1+R)^2}{4RR_1} \biggr]\cos\psi </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{cRR_1}\biggr] \cos\psi ~-~ \biggl[ \frac{4K\left(\mu\right)}{c(R_1+R)}\biggr] \cos\psi ~-~ \frac{4K(\mu)}{4cR_1 R (R_1+R)^2} \biggl[ R(4c^2 + R_1^2 - R^2) + R_1(4c^2 + R^2 - R_1^2) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{cRR_1}\biggr] \cos\psi ~-~ \biggl[ \frac{4K\left(\mu\right)}{c(R_1+R)}\biggr] \cos\psi ~-~ \frac{K(\mu)}{cR_1 R (R_1+R)^2}\biggl[(4c^2 + R_1R)(R_1+R) - (R_1^3 + R^3) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{cRR_1}\biggr] \cos\psi ~-~ \biggl[ \frac{4K\left(\mu\right)}{c(R_1+R)}\biggr] \cos\psi ~-~ \frac{K(\mu)}{cR_1 R (R_1+R)}\biggl[(4c^2 + R_1R) - (R_1^2 + R^2 - R_1R) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{cRR_1}\biggr] \cos\psi ~-~ \biggl[ \frac{4K\left(\mu\right)}{c(R_1+R)}\biggr] \cos\psi ~-~ \frac{K(\mu)}{cR_1 R (R_1+R)}\biggl[4c^2 - (R_1 - R)^2 \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{cRR_1}\biggr] \cos\psi ~-~ \biggl[ \frac{4K\left(\mu\right)}{c(R_1+R)}\biggr] \cos\psi ~-~ \frac{K(\mu)}{c (R_1+R)}\biggl[2(1-\cos\psi) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{cRR_1}\biggr] \cos\psi~-~\frac{2K(\mu)}{c (R_1+R)}(1+\cos\psi) </math>

<math>~\Rightarrow ~~~\frac{1}{c}\cdot \frac{d\mathfrak{I}(r,\theta,c)}{dc} </math>

<math>~=</math>

<math>~ \frac{1}{c^2}\biggl\{\biggl[ \frac{E(\mu)(R+R_1)}{RR_1} \biggr] \cos\psi ~-~\biggl[ \frac{4K(\mu)}{R+R_1} \biggr] \cos^2\frac{\psi}{2} \biggr\} \, . </math>

This expression appears at the top of Dyson's p. 62.

Step 5

Differentiating a second time gives,

<math>~\frac{d}{dc}\biggl[\frac{1}{c}\cdot \frac{d\mathfrak{I}(r,\theta,c)}{dc}\biggr] </math>

<math>~=</math>

<math>~ \frac{d}{dc}\biggl\{ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{c^2RR_1}\biggr] \cos\psi~-~\frac{2K(\mu)}{c^2 (R_1+R)}(1+\cos\psi) \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~\frac{2}{c^3}\biggl\{ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \cos\psi~-~\frac{2K(\mu)}{ (R_1+R)}(1+\cos\psi) \biggr\} </math>

 

 

<math>~ ~+~\frac{1}{c^2}\cdot \frac{d}{dc}\biggl\{ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \cos\psi~-~\frac{2K(\mu)}{ (R_1+R)}(1+\cos\psi) \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~\frac{2}{c^3}\biggl\{ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \cos\psi~-~\frac{2K(\mu)}{ (R_1+R)}(1+\cos\psi) \biggr\} </math>

 

 

<math>~ ~+~\frac{1}{c^2}\cdot \frac{d}{dc}\biggl\{ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}~-~\frac{2K(\mu)}{ (R_1+R)}\biggr] \cos\psi\biggr\} ~-~\frac{1}{c^2}\cdot \frac{d}{dc}\biggl[ \frac{2K(\mu)}{ (R_1+R)} \biggr] </math>

 

<math>~=</math>

<math>~ ~-~\frac{2}{c^3}\biggl\{ \biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \cos\psi~-~\frac{2K(\mu)}{ (R_1+R)}(1+\cos\psi) \biggr\} ~+~\frac{1}{c^2}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}~-~\frac{2K(\mu)}{ (R_1+R)}\biggr] \frac{d(\cos\psi)}{dc} </math>

 

 

<math>~ ~+~\frac{\cos\psi}{c^2}\cdot \frac{d}{dc}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] ~-~\frac{(1+\cos\psi)}{2c^2}\cdot \frac{d}{dc}\biggl[\frac{4K(\mu)}{ (R_1+R)}\biggr] </math>

 

<math>~=</math>

<math>~ \frac{1}{c^3}\biggl[ \frac{4K(\mu)}{ (R_1+R)}\biggr]\biggl[(1+\cos\psi) - \biggl(\frac{c}{2}\biggr) \frac{d(\cos\psi)}{dc}\biggr] ~-~\frac{2}{c^3}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl[ \cos\psi - \biggl(\frac{c}{2}\biggr) \frac{d(\cos\psi)}{dc}\biggr] </math>

 

 

<math>~ ~+~\frac{\cos\psi}{c^2}\cdot \frac{d}{dc}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] ~-~\frac{(1+\cos\psi)}{2c^3} \biggl\{\biggl[ \frac{E(\mu)(R+R_1)}{RR_1} \biggr] \cos\psi ~-~\biggl[ \frac{4K(\mu)}{R+R_1} \biggr] \cos^2\frac{\psi}{2} \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{1}{c^3}\biggl[ \frac{4K(\mu)}{ (R_1+R)}\biggr]\biggl[\frac{(1+\cos\psi)^2}{2^2} + (1+\cos\psi) - \biggl(\frac{c}{2}\biggr) \frac{d(\cos\psi)}{dc}\biggr] </math>

 

 

<math>~ ~-~\frac{2}{c^3}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl[\frac{(\cos\psi+\cos^2\psi)}{4} ~+~ \cos\psi ~-~ \biggl(\frac{c}{2}\biggr) \frac{d(\cos\psi)}{dc}\biggr] ~+~\frac{\cos\psi}{c^2}\cdot \frac{d}{dc}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] </math>

 

<math>~=</math>

<math>~ \frac{1}{4c^3}\biggl[ \frac{4K(\mu)}{ (R_1+R)}\biggr]\biggl[5+6\cos\psi + \cos^2\psi - 2c \cdot \frac{d(\cos\psi)}{dc}\biggr] </math>

 

 

<math>~ ~-~\frac{1}{2c^3}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl[5\cos\psi+\cos^2\psi ~-~ 2c \cdot \frac{d(\cos\psi)}{dc}\biggr] ~+~\frac{\cos\psi}{c^2}\cdot \frac{d}{dc}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \, . </math>

Now,

<math>~ \frac{d}{dc}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] </math>

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)}{RR_1}\biggr]\frac{dE\left(\mu\right)}{d\mu} \cdot \frac{d\mu}{dc} ~+~ E\left(\mu\right)\frac{d}{dc}\biggl[ \frac{(R_1+R)}{RR_1}\biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)}{RR_1}\biggr]\biggl[\frac{E(\mu) - K(\mu)}{c} \biggr] \cos\psi ~+~ E\left(\mu\right)\biggl\{ \frac{1}{RR_1}\biggl[\frac{dR_1}{dc} + \frac{dR}{dc}\biggr] ~-~ (R_1+R)\biggl[\frac{1}{R R_1^2} \frac{dR_1}{dc} + \frac{1}{R^2 R_1} \frac{dR}{dc}\biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{(R_1+R)}{RR_1}\biggr]\biggl[\frac{E(\mu) - K(\mu)}{c} \biggr] \cos\psi ~-~ E\left(\mu\right)\biggl\{ \biggl[\frac{1}{R^2} \frac{dR}{dc}\biggr] ~+~ \biggl[\frac{1}{R_1^2} \frac{dR_1}{dc} \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~K(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi +E(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi ~-~ E\left(\mu\right)\biggl\{ \biggl[\frac{4c^2 + R^2-R_1^2}{4cR^3}\biggr] ~+~ \biggl[ \frac{4c^2+R_1^2-R^2}{4cR_1^3} \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~K(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi +E(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi ~+~ E\left(\mu\right)\biggl\{ \biggl[\frac{R_1^2 + R^2-4c^2 }{4cR^3}\biggr] ~-~\biggl[\frac{R^2 }{2cR^3}\biggr] ~+~ \biggl[ \frac{R_1^2 + R^2-4c^2}{4cR_1^3} \biggr] ~-~ \biggl[ \frac{R_1^2}{2cR_1^3} \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~K(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi +E(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi ~+~ \frac{E\left(\mu\right)}{2cR_1^2R^2} \biggl\{ R_1^3 \cos\psi ~-~R R_1^2 ~+~ R^3\cos\psi ~-~ R_1 R^2 \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~K(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi +E(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi ~+~ \frac{E\left(\mu\right)}{2cR_1^2R^2} \biggl\{ (R_1^3 + R^3) \cos\psi ~-~R R_1(R_1 + R) \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~K(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi +E(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi ~+~ \frac{E\left(\mu\right)(R_1+R)}{2cR_1^2R^2} \biggl\{ (R_1^2 + R^2 - 4c^2) \cos\psi + 4c^2\cos\psi~-~R R_1(1+\cos\psi) \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~K(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi +E(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi ~+~ \frac{E\left(\mu\right)(R_1+R)}{cR_1 R} \biggl\{ \cos^2\psi ~+~ \frac{2c^2\cos\psi }{R_1R} ~-~\frac{1}{2}(1+\cos\psi) \biggr\} </math>

 

<math>~=</math>

<math>~ ~-~K(\mu)\biggl[ \frac{(R_1+R)}{cRR_1}\biggr] \cos\psi ~+~ \frac{E\left(\mu\right)(R_1+R)}{cR_1 R} \biggl[ \cos^2\psi ~+~\frac{1}{2}(\cos\psi - 1) ~+~ \frac{2c^2\cos\psi }{R_1R} \biggr] \, . </math>

We therefore have,

<math>~\frac{1}{c} \cdot \frac{d}{dc}\biggl[\frac{1}{c}\cdot \frac{d\mathfrak{I}(r,\theta,c)}{dc}\biggr] </math>

<math>~=</math>

<math>~ \frac{1}{4c^4}\biggl[ \frac{4K(\mu)}{ (R_1+R)}\biggr]\biggl\{ 5+6\cos\psi + \cos^2\psi ~-~2\cos\psi \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr]~+~\frac{4c^2}{R_1 R } \biggr\} </math>

 

 

<math>~ ~-~\frac{1}{2c^4}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl\{ 5\cos\psi+\cos^2\psi ~-~2\cos\psi \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr]~+~\frac{4c^2}{R_1 R } \biggr\} </math>

 

 

<math>~ ~+~\frac{\cos\psi}{c^4} \biggl\{ \frac{E\left(\mu\right)(R_1+R)}{R_1 R} \biggl[ \cos^2\psi ~+~\frac{1}{2}(\cos\psi - 1) ~+~ \frac{2c^2\cos\psi }{R_1R} \biggr] ~-~K(\mu)\biggl[ \frac{(R_1+R)}{RR_1}\biggr] \cos\psi \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{1}{c^4}\biggl[ \frac{K(\mu)}{ (R_1+R)}\biggr]\biggl\{ 5+6\cos\psi + \cos^2\psi ~-~2\cos\psi \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr]~+~\frac{4c^2}{R_1 R } \biggr\} </math>

 

 

<math>~ ~-~\frac{1}{2c^4}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl\{ 5\cos\psi+\cos^2\psi ~-~2\cos\psi \biggl[ \cos^2\psi + \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos\psi - 1 \biggr]~+~\frac{4c^2}{R_1 R } \biggr\} </math>

 

 

<math>~ ~-~\frac{1}{2c^4} \biggl[ \frac{E\left(\mu\right)(R_1+R)}{R_1 R}\biggr] \biggl[ ~-~2\cos^3\psi ~-~\cos^2\psi ~+~ \cos\psi ~-~ \frac{4c^2\cos^2\psi }{R_1R} \biggr] </math>

 

 

<math>~ ~+~\frac{1}{c^4}\biggl[\frac{K(\mu)}{(R_1 + R)}\biggr] \biggl[~-~ \frac{(R_1+R)^2\cos^2\psi}{RR_1}\biggr] </math>

 

<math>~=</math>

<math>~ \frac{1}{c^4}\biggl[ \frac{K(\mu)}{ (R_1+R)}\biggr]\biggl\{ 5 ~+~ 8\cos\psi ~+~ \cos^2\psi ~-~2\cos^3\psi ~+~\frac{4c^2}{R_1 R } ~-~ \biggl[ \frac{R_1^2 + R^2 - 4c^2 }{R_1 R} \biggr]\cos^2\psi ~-~ \biggl[ \frac{2R_1R }{R_1 R} \biggr]\cos^2\psi ~-~ \biggl[ \frac{8c^2 }{R_1 R} \biggr]\cos^2\psi \biggr\} </math>

 

 

<math>~ ~-~\frac{1}{2c^4}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl\{ 8\cos\psi ~-~4\cos^3\psi ~+~ \biggl(\frac{4c^2 }{R_1 R}\biggr)(1-2\cos^2\psi) \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{1}{c^4}\biggl[ \frac{K(\mu)}{ (R_1+R)}\biggr]\biggl\{ 5 ~+~ 8\cos\psi ~-~ \cos^2\psi ~-~4\cos^3\psi ~+~\frac{4c^2}{R_1 R }(1-2\cos^2\psi) \biggr\} </math>

 

 

<math>~ ~-~\frac{1}{c^4}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl\{ 4\cos\psi ~-~2\cos^3\psi ~+~ \biggl(\frac{2c^2 }{R_1 R}\biggr)(1-2\cos^2\psi) \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{1}{c^4}\biggl[ \frac{K(\mu)}{ (R_1+R)}\biggr]\biggl\{ 5 ~+~ 8\cos\psi ~-~ \cos^2\psi ~-~4\cos^3\psi ~-~\biggl( \frac{4c^2}{R_1 R } \biggr) \cos 2\psi \biggr\} </math>

 

 

<math>~ ~+~\frac{1}{c^4}\biggl[ \frac{(R_1+R)E\left(\mu\right)}{RR_1}\biggr] \biggl\{ ~-~4\cos\psi ~+~2\cos^3\psi ~+~ \biggl(\frac{2c^2 }{R_1 R}\biggr)\cos 2\psi \biggr\} \, , </math>

which exactly matches the second equation from the top of p. 62 in Dyson (1893a).

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation