Difference between revisions of "User:Tohline/Appendix/Ramblings/Dyson1893Part1"

From VistrailsWiki
Jump to navigation Jump to search
Line 47: Line 47:
</tr>
</tr>
</table>
</table>
where,
where (see beginning of &sect;8 on p. 61),


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 61: Line 61:
<math>~
<math>~
\int_0^\pi \frac{d\phi}{\sqrt{r^2 - 2cr\sin\theta \cos\phi  +c^2}}
\int_0^\pi \frac{d\phi}{\sqrt{r^2 - 2cr\sin\theta \cos\phi  +c^2}}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
2\int_0^{\pi/2} \frac{d\phi}{\sqrt{R_1^2 - (R_1^2-R^2)\sin^2\phi }}
</math>
</math>
   </td>
   </td>

Revision as of 03:14, 17 September 2018

Dyson (1893a) Part I: Some Details

This chapter provides some derivation details relevant to our accompanying discussion of Dyson's analysis of the gravitational potential exterior to an anchor ring.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Overview

In his pioneering work, F. W. Dyson (1893a, Philosophical Transactions of the Royal Society of London. A., 184, 43 - 95) and (1893b, Philosophical Transactions of the Royal Society of London. A., 184, 1041 - 1106) used analytic techniques to determine the approximate equilibrium structure of axisymmetric, uniformly rotating, incompressible tori. C.-Y. Wong (1974, ApJ, 190, 675 - 694) extended Dyson's work, using numerical techniques to obtain more accurate — but still approximate — equilibrium structures for incompressible tori having solid body rotation. Since then, Y. Eriguchi & D. Sugimoto (1981, Progress of Theoretical Physics, 65, 1870 - 1875) and I. Hachisu, J. E. Tohline & Y. Eriguchi (1987, ApJ, 323, 592 - 613) have mapped out the full sequence of Dyson-Wong tori, beginning from a bifurcation point on the Maclaurin spheroid sequence.

External Potential

On p. 59, at the end of §6 of Dyson (1893a), we find the following expression for the potential at point "P", anywhere exterior to an anchor ring:

<math>~\frac{\pi V(r,\theta)}{M}</math>

<math>~=</math>

<math>~ \mathfrak{I}(r,\theta,c) ~+~ \frac{1}{2^3}\biggl(\frac{a^2}{c}\biggr) \frac{d}{dc} \biggl[ \mathfrak{I}(r,\theta,c)\biggr] ~-~ \frac{1}{2^6\cdot 3}\biggl(\frac{a^2}{c}\biggr)^2 \frac{d^2}{dc^2} \biggl[ \mathfrak{I}(r,\theta,c)\biggr] ~+~\cdots </math>

 

 

<math>~ ~+~(-1)^{n+1} \frac{2}{2n+2} \biggl[ \frac{1\cdot 3\cdot 5 \cdots (2n-3)}{2^2\cdot 4^2\cdot 6^2\cdots(2n)^2} \biggr] \biggl(\frac{a^2}{c}\biggr)^n \frac{d^n}{dc^n} \biggl[ \mathfrak{I}(r,\theta,c)\biggr] ~+~ \cdots </math>

where (see beginning of §8 on p. 61),

<math>~\mathfrak{I}(r,\theta,c)</math>

<math>~\equiv</math>

<math>~ \int_0^\pi \frac{d\phi}{\sqrt{r^2 - 2cr\sin\theta \cos\phi +c^2}} </math>

 

<math>~\equiv</math>

<math>~ 2\int_0^{\pi/2} \frac{d\phi}{\sqrt{R_1^2 - (R_1^2-R^2)\sin^2\phi }} </math>


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation