Difference between revisions of "User:Tohline/Appendix/PolytropicBinaries"

From VistrailsWiki
Jump to navigation Jump to search
(Start entering tabulated information on binary polytropes)
 
Line 3: Line 3:
=Polytropic Models of Close Binary Star Systems=
=Polytropic Models of Close Binary Star Systems=


Over the past half-a-dozen years, Patrick Motl, Mario D'Souza, and Wes Even have used the Hachisu SCF technique to construct 3D equilibrium models of synchronously rotating, tidally distorted binary polytropes.  To date, four of these models have been used extensively as initial states for our dynamical simulations of binary mass-transfer.  Various properties of these four SCF-code-generated models are summarized in the following tables; the system mass-ratio is given by the parameter <math>q \equiv M_\mathrm{donor}/M_\mathrm{accretor}</math>.
Over the past half-a-dozen years, Patrick Motl, Mario D'Souza, and Wes Even have used the Hachisu SCF technique to construct 3D equilibrium models of synchronously rotating, tidally distorted binary polytropes.  To date, four of these models have been used extensively as initial states for our dynamical simulations of binary mass-transfer.  Various properties of these four SCF-code-generated models are summarized in the following table; the listed parameters are:
<table border="0" align="center" cellpadding="2">
<tr>
  <td align="right">
<math>q \equiv M_d/M_a</math>&nbsp; :
  </td>
  <td align="left">
System mass ratio
  </td>
</tr>
 
<tr>
  <td align="right">
<math>M</math>&nbsp; :
  </td>
  <td align="left">
Mass
  </td>
</tr>
 
<tr>
  <td align="right">
<math>a</math>&nbsp; :
  </td>
  <td align="left">
Binary separation
  </td>
</tr>
 
<tr>
  <td align="right">
<math>\Omega</math>&nbsp; :
  </td>
  <td align="left">
Orbital angular velocity
  </td>
</tr>
 
<tr>
  <td align="right">
<math>J_\mathrm{tot}</math>&nbsp; :
  </td>
  <td align="left">
Total angular momentum
  </td>
</tr>
 
<tr>
  <td align="right">
<math>\rho^\mathrm{max}</math>&nbsp; :
  </td>
  <td align="left">
Maximum (central) density
  </td>
</tr>
 
<tr>
  <td align="right">
<math>K_\mathrm{n}</math>&nbsp; :
  </td>
  <td align="left">
Constant in the polytropic equation of state, {{User:Tohline/Math/EQ_Polytrope01}}
  </td>
</tr>
 
<tr>
  <td align="right">
<math>V</math>&nbsp; :
  </td>
  <td align="left">
Volume occupied by the star or by the Roche Lobe (RL) surrounding the star
  </td>
</tr>
 
<tr>
  <td align="right">
<math>R</math>&nbsp; :
  </td>
  <td align="left">
Mean stellar radius, where <math>R \equiv [3V/(4\pi)]^{1/3}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>f_\mathrm{RL} \equiv V/V_\mathrm{RL}</math>&nbsp; :
  </td>
  <td align="left">
Roche-lobe filling factor
  </td>
</tr>
 
</table>
 
 
<table align="center" border="1" cellpadding="8" width="95%">
<tr>
  <td align="center" colspan="15">
'''<font color="darkblue">
Properties of (<math>n=3/2</math>) Polytropic Binary Systems
</font>'''
  </td>
</tr>
<tr>
  <td colspan="1" align="center">
'''Model'''
  </td>
  <td align="center" colspan="5">
'''Binary System'''
  </td>
  <td align="center" colspan="4">
'''Accretor'''
  </td>
  <td align="center" colspan="5">
'''Donor'''
  </td>
</tr>
 
<tr>
  <td colspan="1" align="center">
&nbsp;
  </td>
  <td align="center" colspan="1">
<math>q</math>
  </td>
  <td align="center" colspan="1">
<math>M_\mathrm{tot}</math>
  </td>
  <td align="center" colspan="1">
<math>a</math>
  </td>
  <td align="center" colspan="1">
<math>\Omega</math>
  </td>
  <td align="center" colspan="1">
<math>J_\mathrm{tot}</math>
  </td>
 
  <td align="center" colspan="1">
<math>M_a</math>
  </td>
  <td align="center" colspan="1">
<math>\rho^\mathrm{max}_a</math>
  </td>
  <td align="center" colspan="1">
<math>K^a_{3/2}</math>
  </td>
  <td align="center" colspan="1">
<math>R_a</math>
  </td>
 
  <td align="center" colspan="1">
<math>M_d</math>
  </td>
  <td align="center" colspan="1">
<math>\rho^\mathrm{max}_d</math>
  </td>
  <td align="center" colspan="1">
<math>K^d_{3/2}</math>
  </td>
  <td align="center" colspan="1">
<math>R_d</math>
  </td>
  <td align="center" colspan="1">
<math>f_\mathrm{RL}</math>
  </td>
</tr>
 
<tr>
  <td colspan="1" align="center">
'''Q13'''
  </td>
  <td align="center" colspan="1">
1.323
  </td>
  <td align="center" colspan="1">
0.0309
  </td>
  <td align="center" colspan="1">
0.8882
  </td>
  <td align="center" colspan="1">
0.2113
  </td>
  <td align="center" colspan="1">
<math>1.40\times 10^{-3}</math>
  </td>


  <td align="center" colspan="1">
0.0133
  </td>
  <td align="center" colspan="1">
1.0000
  </td>
  <td align="center" colspan="1">
0.0264
  </td>
  <td align="center" colspan="1">
0.2672
  </td>
  <td align="center" colspan="1">
0.0176
  </td>
  <td align="center" colspan="1">
0.6000
  </td>
  <td align="center" colspan="1">
0.0372
  </td>
  <td align="center" colspan="1">
0.3509
  </td>
  <td align="center" colspan="1">
0.968
  </td>
</tr>
<tr>
  <td colspan="1" align="center">
'''Q07'''
  </td>
  <td align="center" colspan="1">
0.70000
  </td>
  <td align="center" colspan="1">
0.02371
  </td>
  <td align="center" colspan="1">
0.83938
  </td>
  <td align="center" colspan="1">
0.20144
  </td>
  <td align="center" colspan="1">
<math>8.938\times 10^{-4}</math>
  </td>
  <td align="center" colspan="1">
0.013945
  </td>
  <td align="center" colspan="1">
1.0000
  </td>
  <td align="center" colspan="1">
0.02732
  </td>
  <td align="center" colspan="1">
0.2728
  </td>
  <td align="center" colspan="1">
0.009761
  </td>
  <td align="center" colspan="1">
0.6077
  </td>
  <td align="center" colspan="1">
0.02512
  </td>
  <td align="center" colspan="1">
0.2888
  </td>
  <td align="center" colspan="1">
0.998
  </td>
</tr>
<tr>
  <td colspan="1" align="center">
'''Q05'''
  </td>
  <td align="center" colspan="1">
0.500
  </td>
  <td align="center" colspan="1">
<math>9.216\times 10^{-3}</math>
  </td>
  <td align="center" colspan="1">
0.8764
  </td>
  <td align="center" colspan="1">
0.1174
  </td>
  <td align="center" colspan="1">
<math>1.97\times 10^{-4}</math>
  </td>
  <td align="center" colspan="1">
<math>6.143\times 10^{-3}</math>
  </td>
  <td align="center" colspan="1">
1.0000
  </td>
  <td align="center" colspan="1">
0.016
  </td>
  <td align="center" colspan="1">
0.2067
  </td>
  <td align="center" colspan="1">
<math>3.073\times 10^{-3}</math>
  </td>
  <td align="center" colspan="1">
0.235
  </td>
  <td align="center" colspan="1">
0.016
  </td>
  <td align="center" colspan="1">
0.2689
  </td>
  <td align="center" colspan="1">
0.898
  </td>
</tr>
<tr>
  <td colspan="1" align="center">
'''Q04'''
  </td>
  <td align="center" colspan="1">
0.4085
  </td>
  <td align="center" colspan="1">
0.02399
  </td>
  <td align="center" colspan="1">
0.8169
  </td>
  <td align="center" colspan="1">
0.2112
  </td>
  <td align="center" colspan="1">
<math>7.794\times 10^{-4}</math>
  </td>
  <td align="center" colspan="1">
0.01703
  </td>
  <td align="center" colspan="1">
1.0000
  </td>
  <td align="center" colspan="1">
0.03119
  </td>
  <td align="center" colspan="1">
0.2918
  </td>
  <td align="center" colspan="1">
0.006957
  </td>
  <td align="center" colspan="1">
0.71
  </td>
  <td align="center" colspan="1">
0.01904
  </td>
  <td align="center" colspan="1">
0.2453
  </td>
  <td align="center" colspan="1">
0.996
  </td>
</tr>
<tr>
  <td align="left" colspan="15">
References:
* Model '''Q13''' (<math>q = 1.323</math>): Table 4 in [http://iopscience.iop.org/0004-637X/643/1/381/pdf/63230.web.pdf publication DMTF06]
* Model '''Q13''' (<math>q = 1.323</math>): Table 4 in [http://iopscience.iop.org/0004-637X/643/1/381/pdf/63230.web.pdf publication DMTF06]
* Model '''Q07''' (<math>q = 0.700</math>): First page of the [http://www.phys.lsu.edu/~tohline/clayton/q07.pdf accompanying PDF document].
* Model '''Q07''' (<math>q = 0.700</math>): First page of the [http://www.phys.lsu.edu/~tohline/clayton/q07.pdf accompanying PDF document]. <font color="red">NOTE: In this PDF document, Roche-lobe volumes appear to be too large by factor of 2.</font>
* Model '''Q05''' (<math>q = 0.500</math>): Table 5 in [http://iopscience.iop.org/0004-637X/643/1/381/pdf/63230.web.pdf publication DMTF06]
* Model '''Q05''' (<math>q = 0.500</math>): Table 5 in [http://iopscience.iop.org/0004-637X/643/1/381/pdf/63230.web.pdf publication DMTF06]
* Model '''Q04''' (<math>q = 0.4085</math>): Table 1 in [http://iopscience.iop.org/0004-637X/670/2/1314/pdf/71427.web.pdf publication MFTD07]
* Model '''Q04''' (<math>q = 0.4085</math>): Table 1 in [http://iopscience.iop.org/0004-637X/670/2/1314/pdf/71427.web.pdf publication MFTD07]
  </td>
</tr>
</table>


All of the parameter values listed in these tables are specified in dimensionless ''polytropic units'', defined as follows:
All of the parameter values listed in these tables are specified in dimensionless ''polytropic units'', defined as follows:
Line 26: Line 400:
<math>G = \rho^\mathrm{max}_\mathrm{Accretor} = R_\mathrm{edge} = 1</math>.
<math>G = \rho^\mathrm{max}_\mathrm{Accretor} = R_\mathrm{edge} = 1</math>.
</div>
</div>
In an [http://www.phys.lsu.edu/~tohline/clayton/PolytropicUnits.pdf accompanying PDF document], we explain how to convert from this set of dimension code units to real (''e.g.,'' cgs) units.
   </td>
   </td>
</tr>
</tr>
</table>
</table>


In another [http://www.phys.lsu.edu/~tohline/clayton/PolytropicUnits.pdf accompanying PDF document], we explain how to convert from this set of dimension code units to real (''e.g.,'' cgs) units.




&nbsp;<br />
&nbsp;<br />
{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 17:17, 5 August 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Polytropic Models of Close Binary Star Systems

Over the past half-a-dozen years, Patrick Motl, Mario D'Souza, and Wes Even have used the Hachisu SCF technique to construct 3D equilibrium models of synchronously rotating, tidally distorted binary polytropes. To date, four of these models have been used extensively as initial states for our dynamical simulations of binary mass-transfer. Various properties of these four SCF-code-generated models are summarized in the following table; the listed parameters are:

<math>q \equiv M_d/M_a</math>  :

System mass ratio

<math>M</math>  :

Mass

<math>a</math>  :

Binary separation

<math>\Omega</math>  :

Orbital angular velocity

<math>J_\mathrm{tot}</math>  :

Total angular momentum

<math>\rho^\mathrm{max}</math>  :

Maximum (central) density

<math>K_\mathrm{n}</math>  :

Constant in the polytropic equation of state, <math>~P = K_\mathrm{n} \rho^{1+1/n}</math>

<math>V</math>  :

Volume occupied by the star or by the Roche Lobe (RL) surrounding the star

<math>R</math>  :

Mean stellar radius, where <math>R \equiv [3V/(4\pi)]^{1/3}</math>

<math>f_\mathrm{RL} \equiv V/V_\mathrm{RL}</math>  :

Roche-lobe filling factor


Properties of (<math>n=3/2</math>) Polytropic Binary Systems

Model

Binary System

Accretor

Donor

 

<math>q</math>

<math>M_\mathrm{tot}</math>

<math>a</math>

<math>\Omega</math>

<math>J_\mathrm{tot}</math>

<math>M_a</math>

<math>\rho^\mathrm{max}_a</math>

<math>K^a_{3/2}</math>

<math>R_a</math>

<math>M_d</math>

<math>\rho^\mathrm{max}_d</math>

<math>K^d_{3/2}</math>

<math>R_d</math>

<math>f_\mathrm{RL}</math>

Q13

1.323

0.0309

0.8882

0.2113

<math>1.40\times 10^{-3}</math>

0.0133

1.0000

0.0264

0.2672

0.0176

0.6000

0.0372

0.3509

0.968

Q07

0.70000

0.02371

0.83938

0.20144

<math>8.938\times 10^{-4}</math>

0.013945

1.0000

0.02732

0.2728

0.009761

0.6077

0.02512

0.2888

0.998

Q05

0.500

<math>9.216\times 10^{-3}</math>

0.8764

0.1174

<math>1.97\times 10^{-4}</math>

<math>6.143\times 10^{-3}</math>

1.0000

0.016

0.2067

<math>3.073\times 10^{-3}</math>

0.235

0.016

0.2689

0.898

Q04

0.4085

0.02399

0.8169

0.2112

<math>7.794\times 10^{-4}</math>

0.01703

1.0000

0.03119

0.2918

0.006957

0.71

0.01904

0.2453

0.996

References:


All of the parameter values listed in these tables are specified in dimensionless polytropic units, defined as follows:

Polytropic Units

Here, Polytropic Units are defined such that the radial extent of the computational grid for the self-consistent-field (SCF) model, <math>R_\mathrm{edge}</math>, the maximum density of one binary component, <math>\rho^\mathrm{max}_\mathrm{Accretor}</math>, and the gravitational constant, <math>G</math>, are all unity, that is,

<math>G = \rho^\mathrm{max}_\mathrm{Accretor} = R_\mathrm{edge} = 1</math>.

In an accompanying PDF document, we explain how to convert from this set of dimension code units to real (e.g., cgs) units.


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation