User:Tohline/Appendix/Mathematics/ToroidalSynopsis01

From VistrailsWiki
Jump to navigation Jump to search

Synopsis of Toroidal Coordinate Approach

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Basics

Here we attempt to bring together — in as succinct a manner as possible — our approach and C.-Y. Wong's (1973) approach to determining the gravitational potential of an axisymmetric, uniform-density torus that has a major radius, <math>~R</math>, and a minor, cross-sectional radius, <math>~d</math>. The relevant toroidal coordinate system is one based on an anchor ring of major radius,

<math>~a^2 \equiv R^2 - d^2 \, .</math>

If the meridional-plane location of the anchor ring — as written in cylindrical coordinates — is, <math>~(\varpi, z) = (a,Z_0)</math>, then the preferred toroidal-coordinate system has meridional-plane coordinates, <math>~(\eta, \theta)</math>, defined such that,

<math>~\eta</math>

<math>~=</math>

<math>~\ln\biggl(\frac{r_1}{r_2} \biggr) \, ,</math>

    and,    

<math>~\cos\theta</math>

<math>~=</math>

<math>~\frac{(r_1^2 + r_2^2 - 4a^2)}{2r_1 r_2} \, ,</math>

where,

<math>~r_1^2 </math>

<math>~\equiv</math>

<math>~(\varpi + a)^2 + (z-Z_0)^2 \, ,</math>

    and,    

<math>~r_2^2 </math>

<math>~\equiv</math>

<math>~(\varpi - a)^2 + (z-Z_0)^2 \, ,</math>

and <math>~\theta</math> has the same sign as <math>~(z-Z_0)</math>. Mapping the other direction, we have,

<math>~\varpi</math>

<math>~=</math>

<math>~\frac{a \sinh\eta }{(\cosh\eta - \cos\theta)} \, ,</math>

    and,    

<math>~z-Z_0</math>

<math>~=</math>

<math>~\frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \, .</math>

The three-dimensional differential volume element is,

<math>~d^3 r</math>

<math>~=</math>

<math>\varpi d\varpi ~dz ~d\psi</math>

<math>~=</math>

<math>~\biggl[ \frac{a^3\sinh\eta}{(\cosh\eta - \cos\theta)^3} \biggr] d\eta~ d\theta~ d\psi \, .</math>

Note that, if <math>~\eta_0</math> identifies the surface of the uniform-density torus, then,

<math>~\cosh\eta_0</math>

<math>~=</math>

<math>~\frac{R}{d} \, ,</math>

     

<math>~\sinh\eta_0</math>

<math>~=</math>

<math>~\frac{a}{d} \, ,</math>

    and,    

<math>~\coth\eta_0</math>

<math>~=</math>

<math>~\frac{R}{a} \, ;</math>

and when the integral over the volume element is completed — that is, over all <math>~\psi</math>, over all <math>~\theta</math>, and over the "radial" interval, <math>~\eta_0 \le \eta \le \infty</math> — the resulting volume is,

<math>~V</math>

<math>~=</math>

<math>~\frac{2\pi^2 \cosh\eta_0}{\sinh^3\eta_0}</math>

<math>~=</math>

<math>~2\pi^2 Rd^2 \, .</math>

Also, given that,

<math>~\cosh\eta</math>

<math>~=</math>

<math>~\frac{1}{2}\biggl[ e^\eta + e^{-\eta} \biggr]</math>

    and,    

<math>~\sinh\eta</math>

<math>~=</math>

<math>~\frac{1}{2}\biggl[ e^\eta - e^{-\eta} \biggr] \, ,</math>

we have,

<math>~\coth\eta</math>

<math>~=</math>

<math>~\biggl[ e^\eta + e^{-\eta} \biggr]\biggl[ e^\eta - e^{-\eta} \biggr]^{-1}</math>

<math>~=</math>

<math>~\biggl[ \frac{r_1}{r_2} + \frac{r_2}{r_1} \biggr]\biggl[ \frac{r_1}{r_2} - \frac{r_2}{r_1} \biggr]^{-1}</math>

 

<math>~=</math>

<math>~\biggl[ \frac{r_1^2 + r_2^2}{r_1 r_2} \biggr]\biggl[ \frac{r_1^2 - r_2^2}{r_1 r_2} \biggr]^{-1}</math>

<math>~=</math>

<math>~\biggl[ \frac{r_1^2 + r_2^2}{r_1^2 - r_2^2} \biggr]</math>

 

<math>~=</math>

<math>~ \frac{ \varpi^2 + a^2 + (z - Z_0)^2 }{ 2a\varpi } \, . </math>

Arguments of Q and K

Want to explore argument of <math>~Q_{-1 / 2}(\Chi)</math>, namely,

<math> \Chi \equiv \frac{(\varpi^')^2 + \varpi^2 + (z^' - z)^2}{2\varpi^' \varpi} . </math>

Therefore,

<math>~2\varpi \biggl[ \varpi^' \Chi - a\coth\eta\biggr]</math>

<math>~=</math>

<math>~ (\varpi^')^2 + \varpi^2 + (z^' - z)^2 - [\varpi^2 + a^2 + (z - Z_0)^2 ] </math>

 

<math>~=</math>

<math>~ (\varpi^')^2 - a^2 + [ (z^')^2 - 2z^' z + z^2]- [z^2 - 2zZ_0 + Z_0^2] </math>

 

<math>~=</math>

<math>~ (\varpi^')^2 - a^2 + (z^')^2- Z_0^2 +2z(Z_0 - z^' ) </math>

<math>~\Rightarrow ~~~2a\biggl[ \frac{\sinh\eta }{(\cosh\eta - \cos\theta)} \biggr]\biggl[ \varpi^' \Chi - a\coth\eta\biggr]</math>

<math>~=</math>

<math>~ (\varpi^')^2 - a^2 + (z^')^2- Z_0^2 +2(Z_0 - z^' )\biggl[ Z_0 + \frac{a \sin\theta}{(\cosh\eta - \cos\theta)} \biggr] </math>

 

<math>~=</math>

<math>~ 2aC_0 +2a(Z_0 - z^' )\biggl[ \frac{\sin\theta}{(\cosh\eta - \cos\theta)} \biggr] </math>

<math>~\Rightarrow ~~~ \sinh\eta \biggl[ \varpi^' \Chi - a\coth\eta\biggr]</math>

<math>~=</math>

<math>~ C_0 (\cosh\eta - \cos\theta) + (Z_0 - z^' ) \sin\theta </math>

<math>~\Rightarrow ~~~ \varpi^' \Chi </math>

<math>~=</math>

<math>~ \frac{1}{\sinh\eta} \biggl[ C_0 (\cosh\eta - \cos\theta) + (Z_0 - z^' ) \sin\theta + a\cosh\eta\biggr] </math>

<math>~\Rightarrow ~~~ \Chi </math>

<math>~=</math>

<math>~ \frac{1}{\varpi^' \sinh\eta} \biggl[ (C_0 + a)\cosh\eta + (Z_0 - z^' ) \sin\theta - C_0 \cos\theta \biggr] </math>

where,

<math>~ C_0 \equiv \frac{1}{2a}\biggl[ (\varpi^')^2 - a^2 + (z^')^2- Z_0^2 +2Z_0 (Z_0 - z^' ) \biggr] = \frac{1}{2a}\biggl[ (\varpi^')^2 - a^2 + (z^')^2 +Z_0^2 - 2Z_0 z^' \biggr] = \frac{1}{2a}\biggl[ (\varpi^')^2 - a^2 + (z^' - Z_0)^2 \biggr] \, . </math>

Now, notice that,

<math>~ ( \varpi^')^2 + a^2 + (z^' - Z_0)^2 </math>

<math>~=</math>

<math>~ 2a\varpi^'~\coth\eta^' </math>

<math>~\Rightarrow ~~~ ( \varpi^')^2 - a^2 + (z^' - Z_0)^2 </math>

<math>~=</math>

<math>~ 2a\varpi^'~\coth\eta^' - 2a^2 </math>

<math>~\Rightarrow ~~~ C_0 </math>

<math>~=</math>

<math>~ \varpi^'~\coth\eta^' - a </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{a \sinh\eta^' }{(\cosh\eta^' - \cos\theta^')} \biggr] ~\coth\eta^' - a </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{a \cosh\eta^' }{(\cosh\eta^' - \cos\theta^')} \biggr] - a \, . </math>

Hence,

<math>~ \Chi </math>

<math>~=</math>

<math>~ \frac{\cosh\eta}{\varpi^' \sinh\eta} \biggl[ \varpi^' \coth\eta^' \biggr] + \frac{1}{\sinh\eta} \biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{a \sinh\eta^' } \biggr] \biggl[ (Z_0 - z^' ) \sin\theta - C_0 \cos\theta \biggr] </math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' +

\biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{a \sinh\eta \cdot \sinh\eta^' } \biggr]  \biggl[  (Z_0 - z^' ) \sin\theta - C_0 \cos\theta \biggr]  

</math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' -

\biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{a \sinh\eta \cdot \sinh\eta^' } \biggr]  \biggl\{ \biggl[ \frac{a \sin\theta^'}{(\cosh\eta^' - \cos\theta^')} \biggr] \sin\theta + \biggl[ \frac{a \cosh\eta^' }{(\cosh\eta^' - \cos\theta^')} \biggr] \cos\theta - a\cos\theta\biggr\}  

</math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' -

\biggl[ \frac{1 }{ \sinh\eta \cdot \sinh\eta^' } \biggr]  \biggl\{  \sin\theta^' \sin\theta +  \cosh\eta^'  \cos\theta - (\cosh\eta^' - \cos\theta^')\cos\theta\biggr\}  

</math>

 

<math>~=</math>

<math>~ \coth\eta \cdot \coth\eta^' -

\biggl[ \frac{\sin\theta^' \sin\theta +\cos\theta^'\cos\theta }{ \sinh\eta \cdot \sinh\eta^' } \biggr] 

</math>

 

<math>~=</math>

<math>~ \biggl[ \frac{\cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } \biggr] \, . </math>

Also,

<math>~ \Chi +1 </math>

<math>~=</math>

<math>~ \biggl[ \frac{\sinh\eta \cdot \sinh\eta^' + \cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } \biggr] </math>

<math>~ \Rightarrow ~~~\mu^2 \equiv \frac{ 2 }{\Chi +1 }</math>

<math>~=</math>

<math>~ \biggl[ \frac{2 \sinh\eta \cdot \sinh\eta^' }{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) } \biggr] \, . </math>

NOTE by Tohline: On 5 June 2018, I used Excel to test the validity of the toroidal-coordinate-based expressions that have been derived here, and summarized in the following table.

Summary Table

Quantity

Raw Expression in Cylindrical Coordinates

Expression in Terms of Toroidal Coordinates

<math>~\Chi</math>

<math>

\frac{(\varpi^')^2 + \varpi^2 + (z^' - z)^2}{2\varpi^'  \varpi} 

</math>

<math>~ \frac{\cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } </math>

<math>~\mu^2 \equiv \frac{2}{\Chi + 1}</math>

<math> \frac{4\varpi^' \varpi}{(\varpi^' + \varpi)^2 + (z^' - z)^2} </math>

<math>~ \frac{2 \sinh\eta \cdot \sinh\eta^' }{ \cosh(\eta^' + \eta) - \cos(\theta^' - \theta) } </math>

Potential

The potential, <math>~U({\vec{r}}~')</math>, at a point <math>~{\vec{r}}~'</math> due to an arbitrary mass distribution, <math>~\rho({\vec{r}})</math>, is,

<math>~U({\vec{r}}~')</math>

<math>~=</math>

<math>~-G \iiint \frac{\rho(\vec{r}) d^3r}{|~\vec{r} - {\vec{r}}^{~'} ~|} \, .</math>

Volume Element

See above.

Green's Function

Wong (1973) points out that in toroidal coordinates the Green's function is,

<math>~\frac{1}{|~\vec{r} - {\vec{r}}^{~'} ~|} </math>

<math>~=</math>

<math>~ \frac{1}{\pi a} \biggl[ (\cosh\eta - \cos\theta)(\cosh \eta^' - \cos\theta^') \biggr]^{1 /2 } \sum\limits_{m,n} (-1)^m \epsilon_m \epsilon_n ~\frac{\Gamma(n-m+\tfrac{1}{2})}{\Gamma(n + m + \tfrac{1}{2})} </math>

 

 

<math>~ \times \cos[m(\psi - \psi^')][\cos[n(\theta - \theta^')] ~\begin{cases}P^m_{n-1 / 2}(\cosh\eta) ~Q^m_{n-1 / 2}(\cosh\eta^') ~~~\eta^' > \eta \\P^m_{n-1 / 2}(\cosh\eta^') ~Q^m_{n-1 / 2}(\cosh\eta)~~~\eta^' < \eta \end{cases}\, , </math>

Wong (1973), Eq. (2.53)

where, <math>~P^m_{n-1 / 2}, Q^m_{n-1 / 2}</math> are "Legendre functions of the first and second kind with order <math>~n - \tfrac{1}{2}</math> and degree <math>~m</math> (toroidal harmonics)," and <math>~\epsilon_m</math> is the Neumann factor, that is, <math>~\epsilon_0 = 1</math> and <math>~\epsilon_m = 2</math> for all <math>~m \ge 1</math>. According to CT99, the Green's function written in toroidal coordinates is,

<math>~ \frac{1}{|\vec{x} - \vec{x}^{~'}|}</math>

<math>~=</math>

<math>~ \frac{1}{\pi \sqrt{\varpi \varpi^'}} \sum_{m=0}^{\infty} \epsilon_m \cos[m(\psi - \psi^')] Q_{m- 1 / 2}(\Chi) </math>

 

<math>~=</math>

<math>~ \frac{1}{a\pi} \biggl[ \frac{(\cosh\eta^' - \cos\theta^')}{\sinh\eta^' } \frac{(\cosh\eta - \cos\theta)}{\sinh\eta } \biggr]^{1 / 2} \sum_{m=0}^{\infty} \epsilon_m \cos[m(\psi - \psi^')] Q_{m- 1 / 2}(\Chi) \, . </math>

Things to note:

  1. The argument of <math>~Q_{m - 1 / 2}</math> in the CT99 expression is very different from the argument of <math>~Q^m_{n - 1 / 2}</math> (or <math>~P^m_{n - 1 / 2}</math>) in Wong's expression.
  2. In both expressions, <math>~m</math> is the integer multiplying the azimuthal angle, <math>~\psi</math>, but in the CT99 expression this index serves as the subscript index of the function, <math>~Q</math>, whereas in Wong's expression it serves as the superscript index of both functions, <math>~Q</math> and <math>~P</math>. In this context, note that,

    <math>~Q^m_{n-\frac{1}{2}}(\cosh\eta)</math>

    <math>~=</math>

    <math>~(-1)^m \sqrt{\frac{\pi}{2}} ~\Gamma(m-n+\tfrac{1}{2}) \biggl[ \frac{1}{ \sqrt{\sinh\eta}} \biggr] P^{n}_{m - \frac{1}{2}} (\coth\eta) \, . </math>

  3. Wong's expression contains not only a summation over the index, <math>~m</math>, but also an explicit summation over the index, <math>~n</math>, which multiplies the "polar" angle, <math>~\theta</math>; no such additional summation appears in the CT99 expression, indicating that the summation over <math>~n</math> has implicitly already been completed. In this context, note that the summation expression gives,

    <math>~ Q^{\mu}_{-\frac{1}{2}}\left(\cosh\xi\right) + 2\sum_{n=1}^{\infty} Q^{\mu}_{n-\frac{1}{2}}\left(\cosh\xi\right) \cos\left[ n (\theta - \theta^') \right] </math>

    <math>~=</math>

    <math>~ e^{\mu\pi i} \Gamma\left(\mu+ \tfrac{1}{2} \right) \biggl[ \dfrac{\left(\frac{1}{2}\pi\right)^{1/2}\left(\sinh\xi\right)^{\mu }}{\left\{ \cosh\xi -\cos\left[ n (\theta - \theta^') \right] \right\}^{\mu+(1/2)}}\biggr] \, ; </math>

    or, specifically for the case of <math>~\mu = 0</math>,

    <math>~ \sum_{n=0}^{\infty} \epsilon_n Q_{n-\frac{1}{2}}\left(\cosh\xi\right) \cos\left[ n(\theta - \theta^') \right] </math>

    <math>~=</math>

    <math>~ \dfrac{ \pi/\sqrt{2} }{\left[ \cosh\xi-\cos(\theta - \theta^') \right]^{\frac{1}{2}} } \, . </math>

  4. Next thought …

New Insight

Caltech's electronic version §3.11, p. 169 of Volume I gives,

<math>~ Q_\nu[t t^' - (t^2-1)^{1 / 2} (t^{'2} - 1)^{1 / 2} \cos\psi] </math>

<math>~=</math>

<math>~ Q_\nu(t) P_\nu(t^') + 2\sum_{n=1}^\infty (-1)^n Q^n_\nu(t) P^{-n}_\nu(t^') \cos(n\psi) \, . </math>

If we make the association, <math>~t \leftrightarrow \coth\eta</math>, then we also have,

<math>~\frac{1}{\sinh\eta}</math>

<math>~=</math>

<math>~\sqrt{t^2 - 1} \, ,</math>

in which case,

<math>~ \Chi </math>

<math>~=</math>

<math>~ \frac{\cosh\eta \cdot \cosh\eta^' - \cos(\theta^' - \theta) }{ \sinh\eta \cdot \sinh\eta^' } </math>

 

<math>~=</math>

<math>~ t t^' - (t^2-1)^{1 / 2}(t^{'2}-1)^{1 / 2}\cos(\theta^' - \theta) \, . </math>

Put together, then, these expressions mean,

<math>~ Q_{m - 1 / 2}(\Chi) </math>

<math>~=</math>

<math>~ Q_{m-1 / 2}(\coth\eta) P_{m - 1 / 2}(\coth\eta^') + 2\sum_{n=1}^\infty (-1)^n Q^n_{m - 1 / 2}(\coth\eta) P^{-n}_{m - 1 / 2}(\coth\eta^') \cos[n(\theta^' - \theta)] </math>

 

<math>~=</math>

<math>~ \sum_{n=1}^\infty \epsilon_n (-1)^n Q^n_{m - 1 / 2}(\coth\eta) P^{-n}_{m - 1 / 2}(\coth\eta^') \cos[n(\theta^' - \theta)] \, . </math>

Also, from our derived <math>~Q-P</math> relation,

<math>~Q^m_{n-\frac{1}{2}}(\cosh\eta)</math>

<math>~=</math>

<math>~ \sqrt{\frac{\pi}{2}} ~\Gamma(n+m + \tfrac{1}{2}) ~(-1)^m\biggl[ \frac{1}{ \sqrt{\sinh\eta}} \biggr] P^{-n}_{m - \frac{1}{2}} (\coth\eta) </math>

<math>~\Rightarrow ~~~ P^{-n}_{m - \frac{1}{2}} (\coth\eta)</math>

<math>~=</math>

<math>~ \sqrt{\frac{2}{\pi}} ~\frac{(-1)^m \sqrt{\sinh\eta} }{\Gamma(n+m + \tfrac{1}{2})} ~ Q^m_{n-\frac{1}{2}}(\cosh\eta) \, . </math>

we can write,

<math>~ Q_{m - 1 / 2}(\Chi) </math>

<math>~=</math>

<math>~ \sum_{n=1}^\infty \epsilon_n (-1)^n Q^n_{m - 1 / 2}(\coth\eta) \biggl\{ \sqrt{\frac{2}{\pi}} ~\frac{(-1)^m \sqrt{\sinh\eta^'} }{\Gamma(n+m + \tfrac{1}{2})} ~ Q^m_{n-\frac{1}{2}}(\cosh\eta^') \biggr\} \cos[n(\theta^' - \theta)] </math>

Next, we pull from the accompanying discussion of the Gil et al. (2000) expression,

<math>~Q_{n-1 / 2}^m (\lambda)</math>

<math>~=</math>

<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math>

where, <math>~\lambda \equiv x/\sqrt{x^2-1}</math>. Identifying <math>~x</math> with <math>~\cosh\eta</math>, in which case we have <math>~\lambda = \coth\eta</math>, and, switching index notation, <math>~n \leftrightarrow m</math>, gives,

<math>~Q_{m-1 / 2}^n (\coth\eta)</math>

<math>~=</math>

<math>~(-1)^m \frac{\pi^{3/2}}{\sqrt{2} \Gamma(m-n+1 / 2)} (\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, . </math>

 

<math>~=</math>

<math>~ (-1)^n \pi^{1 / 2} \Gamma(n - m + 1 / 2)(\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \, . </math>

where, this last step also incorporates the "Euler reflection formula for gamma functions", namely,

<math>~\frac{1}{\Gamma(m-n+\tfrac{1}{2})} </math>

<math>~=</math>

<math>~\frac{\Gamma(n-m+\frac{1}{2}) }{\pi (-1)^{m+n}} \, .</math>

So we have,

<math>~ Q_{m - 1 / 2}(\Chi) </math>

<math>~=</math>

<math>~ \sum_{n=1}^\infty \epsilon_n (-1)^n \biggl\{ (-1)^n \pi^{1 / 2} \Gamma(n - m + 1 / 2)(\sinh\eta)^{1 / 2} P_{n-1 / 2}^m(\cosh\eta) \biggr\} \biggl\{ \sqrt{\frac{2}{\pi}} ~\frac{(-1)^m \sqrt{\sinh\eta^'} }{\Gamma(n+m + \tfrac{1}{2})} ~ Q^m_{n-\frac{1}{2}}(\cosh\eta^') \biggr\} \cos[n(\theta^' - \theta)] </math>

 

<math>~=</math>

<math>~\sqrt{2}~\sqrt{\sinh\eta^'} \sqrt{\sinh\eta} \sum_{n=1}^\infty \epsilon_n (-1)^m \frac{ \Gamma(n - m + \tfrac{1}{2})}{\Gamma(n+m + \tfrac{1}{2})} P_{n-1 / 2}^m(\cosh\eta) Q^m_{n-\frac{1}{2}}(\cosh\eta^') \cos[n(\theta^' - \theta)] \, . </math>

Hence, the CT99 Green's function may be rewritten as,

<math>~ \frac{1}{|\vec{x} - \vec{x}^{~'}|}</math>

<math>~=</math>

<math>~ \frac{\sqrt{2}}{a\pi} [ (\cosh\eta^' - \cos\theta^') (\cosh\eta - \cos\theta)]^{1 / 2} \sum_{m=0}^{\infty} \epsilon_m \cos[m(\psi - \psi^')] \sum_{n=1}^\infty \epsilon_n (-1)^m \frac{ \Gamma(n - m + \tfrac{1}{2})}{\Gamma(n+m + \tfrac{1}{2})} P_{n-1 / 2}^m(\cosh\eta) Q^m_{n-\frac{1}{2}}(\cosh\eta^') \cos[n(\theta^' - \theta)] </math>

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation