Difference between revisions of "User:Tohline/Appendix/CGH/ParallelAperturesConsolidate"

From VistrailsWiki
Jump to navigation Jump to search
Line 60: Line 60:
</table>
</table>


Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>.  Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form,
<span id="FocalPoint">Note that</span> <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>.  Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form that will be referred to as our,


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <th align="center" colspan="3">Focal-Point Expression</th>
</tr>


<tr>
<tr>
Line 94: Line 97:
</table>
</table>


===Case 1===
In a related accompanying derivation titled, [[User:Tohline/Appendix/CGH/ParallelApertures#Analytic_Result|''Analytic Result'']], we made the substitution,
In a related accompanying derivation titled, [[User:Tohline/Appendix/CGH/ParallelApertures#Analytic_Result|''Analytic Result'']], we made the substitution,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 145: Line 149:
</table>
</table>


'''Case #1:''' &nbsp; If we assume that both <math>~a_0</math> and <math>~\phi</math> are independent of position along the aperture, and that the aperture &#8212; and, hence the integration &#8212; extends from <math>~Y_2 = -w/2</math> to <math>~Y_1 = +w/2</math>, we have shown that this last expression can be evaluated analytically to give,
If we assume that both <math>~a_0</math> and <math>~\phi</math> are independent of position along the aperture, and that the aperture &#8212; and, hence the integration &#8212; extends from <math>~Y_2 = -w/2</math> to <math>~Y_1 = +w/2</math>, we have shown that this last expression can be evaluated analytically to give,


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 177: Line 181:
</tr>
</tr>
</table>
</table>
We need to explicitly demonstrate that an evaluation of our [[#FocalPoint|Focal-Point Expression]] with <math>~a_j = 1</math>, gives this last sinc-function expression, to within a multiplicative factor of, something like, <math>~j_\mathrm{max}</math>.
===Case 2===
In our accompanying discussion of the [[User:Tohline/Appendix/Ramblings/FourierSeries|Fourier Series]], we have shown that a square wave can be constructed from the expression,
<div align="center" id="StandardExpression">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~f(x)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{c}{L} + \sum_{n=1}^{\infty} \biggl( \frac{2}{n\pi} \biggr) \sin \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) \, .
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2c}{L}\biggl\{\frac{1}{2} + \sum_{n=1}^{\infty} \mathrm{sinc} \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) \biggr\} \, .
</math>
  </td>
</tr>
</table>
</div>


=See Also=
=See Also=

Revision as of 22:29, 17 March 2020

CGH: Consolidate Expressions Regarding Parallel Apertures

One-dimensional Apertures

From our accompanying discussion of the Utility of FFT Techniques, we start with the most general expression for the amplitude at one point on an image screen, namely,

<math>~A(y_1)</math>

<math>~=</math>

<math>~\sum_j a_j e^{i(2\pi D_j/\lambda + \phi_j)} \, , </math>

and, assuming that <math>~|Y_j/L| \ll 1</math> for all <math>~j</math>, deduce that,

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~\sum_j a_j e^{i[ 2\pi L/\lambda + \phi_j]}\biggl[ \cos\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) - i \sin\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \biggr] \, , </math>

where,

<math>~L</math>

<math>~\equiv</math>

<math>~ Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \, . </math>

Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form that will be referred to as our,

Focal-Point Expression

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i 2\pi L/\lambda } \sum_j a_j e^{i \phi_j} \cdot e^{-i \Theta_j } \, , </math>

where,

<math>~\Theta_j</math>

<math>~\equiv</math>

<math>~\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \, .</math>

Case 1

In a related accompanying derivation titled, Analytic Result, we made the substitution,

<math>~a_j </math>

<math>~\rightarrow</math>

<math>~a_0(Y) dY = a_0(\Theta) \biggl[ \frac{w}{2\beta_1} \biggr] d\Theta \, ,</math>

where,

<math>~\frac{1}{\beta_1}</math>

<math>~\equiv</math>

<math>~\frac{\lambda L}{\pi y_1w} \, ,</math>

and changed the summation to an integration, obtaining,

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i 2\pi L/\lambda }\biggl[ \frac{w}{2\beta_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot e^{-i \Theta } d\Theta \, . </math>

If we assume that both <math>~a_0</math> and <math>~\phi</math> are independent of position along the aperture, and that the aperture — and, hence the integration — extends from <math>~Y_2 = -w/2</math> to <math>~Y_1 = +w/2</math>, we have shown that this last expression can be evaluated analytically to give,

<math>~A(y_1)</math>

<math>~\approx</math>

<math>~ e^{i [2\pi L/\lambda + \phi] }\biggl[ \frac{a_0 w}{2\beta_1} \biggr] \int_{\Theta_2}^{\Theta_1} e^{-i \Theta } d\Theta </math>

 

<math>~=</math>

<math>~ e^{i [2\pi L/\lambda + \phi] } \cdot a_0 w ~\mathrm{sinc}(\beta_1) \, . </math>

We need to explicitly demonstrate that an evaluation of our Focal-Point Expression with <math>~a_j = 1</math>, gives this last sinc-function expression, to within a multiplicative factor of, something like, <math>~j_\mathrm{max}</math>.

Case 2

In our accompanying discussion of the Fourier Series, we have shown that a square wave can be constructed from the expression,

<math>~f(x)</math>

<math>~=</math>

<math>~ \frac{c}{L} + \sum_{n=1}^{\infty} \biggl( \frac{2}{n\pi} \biggr) \sin \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) \, . </math>

 

<math>~=</math>

<math>~ \frac{2c}{L}\biggl\{\frac{1}{2} + \sum_{n=1}^{\infty} \mathrm{sinc} \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) \biggr\} \, . </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation