Relational Processing
• on MapReduce
 • Jerome Simeon
 • IBM Watson Research

• Content obtained from many sources,
 • notably: Jimmy Lin course on MapReduce.
•Our Plan Today

1. Recap:
 – Key relational DBMS notes
 – Key Hadoop notes

2. Relational Algorithms on MapReduce
 – How to do a select, groupby, join etc

3. Queries on MapReduce: Hive and Pig
Big Data Analysis

- Peta-scale datasets are everywhere:
 - Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
 - eBay has 6.5 PB of user data + 50 TB/day (5/2009)
 - ...

- A lot of these datasets have some structure
 - Query logs
 - Point-of-sale records
 - User data (e.g., demographics)
 - ...

- How do we perform data analysis at scale?
 - Relational databases and SQL
 - MapReduce (Hadoop)
Relational Databases vs. MapReduce

Relational databases:
- Multipurpose: analysis and transactions; batch and interactive
- Data integrity via ACID transactions
- Lots of tools in software ecosystem (for ingesting, reporting, etc.)
- Supports SQL (and SQL integration, e.g., JDBC)
- Automatic SQL query optimization

MapReduce (Hadoop):
- Designed for large clusters, fault tolerant
- Data is accessed in “native format”
- Supports many query languages
- Programmers retain control over performance
- Open source

Source: O'Reilly Blog post by Joseph Hellerstein (11/19/2008)
Database Workloads

OLTP (online transaction processing)
- Typical applications: e-commerce, banking, airline reservations
- User facing: real-time, low latency, highly-concurrent
- Tasks: relatively small set of “standard” transactional queries
- Data access pattern: random reads, updates, writes (involving relatively small amounts of data)

OLAP (online analytical processing)
- Typical applications: business intelligence, data mining
- Back-end processing: batch workloads, less concurrency
- Tasks: complex analytical queries, often ad hoc
- Data access pattern: table scans, large amounts of data involved per query
One Database or Two?

- Downsides of co-existing OLTP and OLAP workloads
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency

- Solution: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads
 - How do we connect the two?
OLTP/OLAP Architecture

OLTP

ETL
(Extract, Transform, and Load)

OLAP
OLTP/OLAP Integration

- OLTP database for user-facing transactions
 - Retain records of all activity
 - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing
 - Business intelligence: reporting, ad hoc queries, data mining, etc.
 - Feedback to improve OLTP services
Business Intelligence

• Premise: more data leads to better business decisions
 • Periodic reporting as well as ad hoc queries
 • Analysts, not programmers (importance of tools and dashboards)

• Examples:
 • Slicing-and-dicing activity by different dimensions to better understand the marketplace
 • Analyzing log data to improve OLTP experience
 • Analyzing log data to better optimize ad placement
 • Analyzing purchasing trends for better supply-chain management
 • Mining for correlations between otherwise unrelated activities
OLTP/OLAP Architecture: Hadoop?

OLTP

ETL
(Extract, Transform, and Load)

OLAP

What about here?

Hadoop here?
Why does this make sense?
ETL Bottleneck

- Reporting is often a nightly task:
 - ETL is often slow: why?
 - What happens if processing 24 hours of data takes longer than 24 hours?

- Hadoop is perfect:
 - Most likely, you already have some data warehousing solution
 - Ingest is limited by speed of HDFS
 - Scales out with more nodes
 - Massively parallel
 - Ability to use any processing tool
 - Much cheaper than parallel databases
 - ETL is a batch process anyway!
MapReduce: Recap

Programmers must specify:

- **map** \((k, v) \rightarrow <k', v'>\)*
- **reduce** \((k', v') \rightarrow <k', v'>\)*
 - All values with the same key are reduced together

Optionally, also:

- **partition** \((k', \text{number of partitions}) \rightarrow \text{partition for } k' \)
 - Often a simple hash of the key, e.g., \(\text{hash}(k') \mod n \)
 - Divides up key space for parallel reduce operations

- **combine** \((k', v') \rightarrow <k', v'>\)*
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic

The execution framework handles everything else…
Shuffle and Sort: aggregate values by keys

reduce

r1 s1

r2 s2

r3 s3
“Everything Else”

- The execution framework handles everything else…
 - Scheduling: assigns workers to map and reduce tasks
 - “Data distribution”: moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts

- Limited control over data and execution flow
 - All algorithms must be expressed in m, r, c, p

- You don’t know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing
MapReduce algorithms for processing relational data
Design Pattern: Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values are arbitrarily ordered
- What if want to sort value also?
 - E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…
Secondary Sorting: Solutions

Solution 1:
- Buffer values in memory, then sort
- Why is this a bad idea?

Solution 2:
- “Value-to-key conversion” design pattern: form composite intermediate key, (k, v1)
- Let execution framework do the sorting
- Preserve state across multiple key-value pairs to handle processing
- Anything else we need to do?
Value-to-Key Conversion

Before

\[k \rightarrow (v_1, r), (v_4, r), (v_8, r), (v_3, r) \ldots \]

Values arrive in arbitrary order…

After

\[(k, v_1) \rightarrow (v_1, r) \]
\[(k, v_3) \rightarrow (v_3, r) \]
\[(k, v_4) \rightarrow (v_4, r) \]
\[(k, v_8) \rightarrow (v_8, r) \]

Values arrive in sorted order…

Process by preserving state across multiple keys

Remember to partition correctly!

Working Scenario

- Two tables:
 - User demographics (gender, age, income, etc.)
 - User page visits (URL, time spent, etc.)

- Analyses we might want to perform:
 - Statistics on demographic characteristics
 - Statistics on page visits
 - Statistics on page visits by URL
 - Statistics on page visits by demographic characteristic
 - ...

Relational Algebra

- Primitives
 - Projection (π)
 - Selection (σ)
 - Cartesian product (\times)
 - Set union (\cup)
 - Set difference (\setminus)
 - Rename (ρ)

- Other operations
 - Join (\bowtie)
 - Group by… aggregation
 - …
Projection
Projection in MapReduce

- Easy!
 - Map over tuples, emit new tuples with appropriate attributes
 - No reducers, unless for regrouping or resorting tuples
 - Alternatively: perform in reducer, after some other processing

- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!
Selection
Selection in MapReduce

- **Easy!**
 - Map over tuples, emit only tuples that meet criteria
 - No reducers, unless for regrouping or resorting tuples
 - Alternatively: perform in reducer, after some other processing

- **Basically limited by HDFS streaming speeds**
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!
Group by... Aggregation

- Example: What is the average time spent per URL?
- In SQL:
 - `SELECT url, AVG(time) FROM visits GROUP BY url`
- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners
Relational Joins
Relational Joins
Types of Relationships

Many-to-Many

One-to-Many

One-to-One
Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
 - Striped variant
 - Memcached variant
Reduce-side Join

- Basic idea: group by join key
 - Map over both sets of tuples
 - Emit tuple as value with join key as the intermediate key
 - Execution framework brings together tuples sharing the same key
 - Perform actual join in reducer
 - Similar to a “sort-merge join” in database terminology

- Two variants
 - 1-to-1 joins
 - 1-to-many and many-to-many joins
Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S
Reduce-side Join: 1-to-many

Map

<table>
<thead>
<tr>
<th>R1</th>
<th>S2</th>
<th>S3</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys</td>
<td>keys</td>
<td>keys</td>
<td>keys</td>
</tr>
<tr>
<td>values</td>
<td>values</td>
<td>values</td>
<td>values</td>
</tr>
</tbody>
</table>

Reduce

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>S2</td>
</tr>
<tr>
<td>S2</td>
<td>S3</td>
</tr>
<tr>
<td>S3</td>
<td>S9</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

What’s the problem?
Reduce-side Join: V-to-K Conversion

In reducer...

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
</tr>
</tbody>
</table>

- New key encountered: hold in memory
 - Cross with records from other set

- New key encountered: hold in memory
 - Cross with records from other set
Reduce-side Join: many-to-many

In reducer...

keys	values
R1 |
R5 |
R8 |
S2 |
S3 |
S9 |

Hold in memory

Cross with records from other set

What’s the problem?
Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

A sequential scan through both datasets to join (called a “merge join” in database terminology)
Map-side Join: Parallel Scans

- If datasets are sorted by join key, join can be accomplished by a scan over both datasets
- How can we accomplish this in parallel?
 - Partition and sort both datasets in the same manner
- In MapReduce:
 - Map over one dataset, read from other corresponding partition
 - No reducers necessary (unless to repartition or resort)
- Consistently partitioned datasets: realistic to expect?
In-Memory Join

- Basic idea: load one dataset into memory, stream over other dataset
 - Works if $R \ll S$ and R fits into memory
 - Called a “hash join” in database terminology

- MapReduce implementation
 - Distribute R to all nodes
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples
In-Memory Join: Variants

- **Striped variant:**
 - R too big to fit into memory?
 - Divide R into R1, R2, R3, … s.t. each Rn fits into memory
 - Perform in-memory join: \(\forall n, R_n \bowtie S \)
 - Take the union of all join results

- **Memcached join:**
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup
Memcached

Caching servers: 15 million requests per second, 95% handled by memcache (15 TB of RAM)

Database layer: 800 eight-core Linux servers running MySQL (40 TB user data)

Source: Technology Review (July/August, 2008)
Memcached Join

- Memcached join:
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup

- Capacity and scalability?
 - Memcached capacity >> RAM of individual node
 - Memcached scales out with cluster

- Latency?
 - Memcached is fast (basically, speed of network)
 - Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)
Which join to use?

- In-memory join > map-side join > reduce-side join
 - Why?
- Limitations of each?
 - In-memory join: memory
 - Map-side join: sort order and partitioning
 - Reduce-side join: general purpose
Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 - Multiple strategies for relational joins

- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization
Evolving roles for relational database and MapReduce
OLTP/OLAP/Hadoop Architecture

OLTP

ETL
(Extract, Transform, and Load)

Hadoop

OLAP

Why does this make sense?
Need for High-Level Languages

- Hadoop is great for large-data processing!
 - But writing Java programs for everything is verbose and slow
 - Analysts don’t want to (or can’t) write Java
- Solution: develop higher-level data processing languages
 - Hive: HQL is like SQL
 - Pig: Pig Latin is a bit like Perl
Hive and Pig

- **Hive**: data warehousing application in Hadoop
 - Query language is HQL, variant of SQL
 - Tables stored on HDFS as flat files
 - Developed by Facebook, now open source

- **Pig**: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Developed by Yahoo!, now open source
 - Roughly 1/3 of all Yahoo! internal jobs

- **Common idea:**
 - Provide higher-level language to facilitate large-data processing
 - Higher-level language “compiles down” to Hadoop jobs
Hive: Example

- Hive looks similar to an SQL database
- Relational join on two tables:
 - Table of word counts from Shakespeare collection
 - Table of word counts from the bible

```
SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;
```

<table>
<thead>
<tr>
<th>Rank</th>
<th>Word</th>
<th>Shakespeare</th>
<th>Bible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>the</td>
<td>25848</td>
<td>62394</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>23031</td>
<td>8854</td>
</tr>
<tr>
<td>3</td>
<td>and</td>
<td>19671</td>
<td>38985</td>
</tr>
<tr>
<td>4</td>
<td>to</td>
<td>18038</td>
<td>13526</td>
</tr>
<tr>
<td>5</td>
<td>of</td>
<td>16700</td>
<td>34654</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>14170</td>
<td>8057</td>
</tr>
<tr>
<td>7</td>
<td>you</td>
<td>12702</td>
<td>2720</td>
</tr>
<tr>
<td>8</td>
<td>my</td>
<td>11297</td>
<td>4135</td>
</tr>
<tr>
<td>9</td>
<td>in</td>
<td>10797</td>
<td>12445</td>
</tr>
<tr>
<td>10</td>
<td>is</td>
<td>88826884</td>
<td></td>
</tr>
</tbody>
</table>

Source: Material drawn from Cloudera training VM
Hive: Behind the Scenes

```
SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;
```

(Abstract Syntax Tree)

(one or more of MapReduce jobs)
Hive: Behind the Scenes

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
 s
 TableScan
 alias: s
 Filter Operator
 predicate:
 expr: (freq >= 1)
 type: boolean
 Reduce Output Operator
 key expressions:
 expr: word
 type: string
 sort order: +
 Map-reduce partition columns:
 expr: word
 type: string
tag: 0
 value expressions:
 expr: freq
 type: int
 expr: word
 type: string
Reduce Operator Tree:
 Join Operator
 condition map:
 Inner Join 0 to 1
 condition expressions:
 0 [VALUE._col0] [VALUE._col1]
 1 [VALUE._col0]
 outputColumnNames: _col0, _col1, _col2
 Filter Operator
 predicate:
 expr: ((_col0 >= 1) and (_col2 >= 1))
 type: boolean
 Select Operator
 expressions:
 expr: _col1
 type: string
 expr: _col0
 type: int
 expr: _col2
 type: int
 File Output Operator
 compressed: false
 GlobalTableId: 0
table:
 input format: org.apache.hadoop.mapred.TextInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
 hdfs://localhost:8022/tmp/hive-training/364214370/10002
 Reduce Output Operator
 key expressions:
 expr: _col1
 type: int
 sort order: -
tag: -1
 value expressions:
 expr: _col0
 type: string
 expr: _col1
 type: int
 expr: _col2
 type: int
Reduce Operator Tree:
 Extract
 Limit
 File Output Operator
 compressed: false
 GlobalTableId: 0
table:
 input format: org.apache.hadoop.mapred.TextInputFormat
 output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10