
Introduction to the VisTrails System
Erik W. Anderson
Steven P. Callahan

Juliana Freire
Emanuele Santos

Carlos E. Scheidegger
Cláudio T. Silva

Huy T. Vo

The VisTrails Windows

1 Summary

This document is a short introduction and tutorial of the VisTrails prototype.
This is not meant for widespread public use! We are making this early alpha
release of VisTrails available to a select group of potential collaborators to
give them a feel of the system and to get early feedback. You should expect
broken or missing features and bugs in this release as well as major changes
between this and future versions of VisTrails.

1



2 Rationale and Goals of VisTrails

Scientists are now faced with an incredible volume of data to analyze. To
analyze and validate various hypotheses, it is necessary to create insight-
ful visualizations of both the simulated processes and observed phenomena.
Data exploration through visualization requires scientists to go through sev-
eral steps. They need to select data sets and specify a series of operations to
apply to the data to create appropriate visual representations before they can
finally view and analyze the results. Often, insight comes from comparing
multiple visualizations. Unfortunately, today this process is far from inter-
active and contains many error-prone and time-consuming tasks. Today, the
generation and maintenance of visualization data products is a major bot-
tleneck in the scientific process, hindering not only the ability to mine sci-
entific data, but the actual use of scientific data. VisTrails extends existing
dataflow-based visualization systems to streamline the creation, execution
and sharing of complex visualizations.

By treating both data products and the workflows used to create the
products as first class citizens, VisTrails provides a scalable mechanism for
generating a large number of visualizations, comprehensive history manage-
ment, and systematic maintenance of visualization provenance. VisTrails
uses an XML-based dialect to represent visualization pipelines that allows
the specifications to be shared and queried. In addition, these specifications
are executable and can be used to re-generate images, possibly using differ-
ent parameters. Last, but not least, the availability of formal specifications
allows VisTrails to analyze and optimize these pipelines.

3 Starting VisTrails

VisTrails is available on Windows XP, Mac OSX, and Linux. These versions
all have the same functionality and only differ in user interface as noted
throughout this document. To install on Windows and Linux, unzip the
VisTrails.zip archive to your desired location. On Mac, open the archive
VisTrails.dmg, and copy the two directories to your hard drive.

The VisTrails program has two main components, the Builder and the
Spreadsheet. The Builder is where an actual VisTrail is built or modified
and the Spreadsheet is where you can view the different visualizations. Upon
starting VisTrails you should see both windows. If you dont, it is possible
one is hidden behind the other and you may need to move or resize the front
window.

2



The VisTrails Spreadsheet

4 The VisTrails Spreadsheet

The Spreadsheet defaults to eight cells arranged in two rows of three columns.
You can change the number of cells in the rows or columns by using the
controls in the upper left corner. Typing a number into the text boxes or
clicking on the up and down buttons of the associated spinners will increase
or decrease the number of cells in the Spreadsheet. For now, leave them at
the default setting.

You can resize the Spreadsheet by placing your cursor on an edge or corner
of the Spreadsheet window, holding down the left mouse button and moving
the edge or corner of the window.

You can resize the cells within the Spreadsheet by placing your cursor on
an edge or corner of the grey border that surrounds the cells, holding down
the left mouse button and moving the edge or corner of the border. Notice
that all the views are resized. By selecting and moving a vertical border edge
you can make the cells wider or narrower. Moving horizontal edges resizes
the height of the cells. And selecting and moving a grey border corner resizes
the cell width and height at the same time.

4.1 Loading a VisTrail Into the Spreadsheet

In the Spreadsheet, select File/Open from the menubar. Browse to the Vis-
TrailsData directory located inside the VisTrails directory.

3



Select the brain.vis folder in the VisTrailsData directory and click the
Ok button. This will load a VisTrail that uses all eight cells in the default
Spreadsheet.

There might be a pause before the first cell in the first row is loaded,
but notice the remaining cells in the row are quickly updated with variants
of that data. The same process occurs in the second row. This is VisTrails
caching at work. After the data is initially loaded, modifying and updating
the data occurs very quickly.

Your Spreadsheet should look like the image below.

The VisTrails Spreadsheet with the brain study loaded.

4.2 Adjusting the View

The view of the data can be dynamically manipulated with the mouse and
keyboard. Common viewing commands are given below. Note that you can
adjust the view in each cell independently.

Operation Windows Linux Mac
Rotate Left Button Left Button Button

Translate Middle Button Middle Button shift + Button
Zoom Right Button Right Button command + Button

Wireframe w w w
Surface s s s

Mouse Events for Viewing

4



4.3 Selecting a Cell

You can select a cell by holding down the ctrl key on your keyboard and left
clicking the mouse in the desired view (ctrl + Mouse Button on Mac). You
can select multiple cells by continuing to hold down the Ctrl button while
choosing other cells. A blue border around a cell indicates that it has been
selected. Deselecting a selected cell is done in a similar manner.

Multiple cells can be selected simultaneously using the sync buttons at
the top of each column and at the front of each row. Pressing one of these
buttons will select or deselect all cells in the entire row or column. The
smaller button in the top left corner of the Spreadsheet selects or deselects
all the cells.

The VisTrails Spreadsheet with the brain study loaded.

4.4 Synchronising Cells

You can synchronize multiple cells so any rotation, zoom or translation com-
mands that are given in one cell are reflected in the other selected cells. After
selecting multiple cells, hold down the ctrl button and right click on one of
the selected cells (ctrl + command + Mouse Button on Mac). A popup
selection box will appear with Clear, Sync Selected Cells, and Unsync All
Cells options. Choose Sync Selected Cells then adjust the data in one of the
selected cells. You will notice that the other selected cells adjust to match
the view of the selected cell.

5



You can unsync the cells by selecting Unsync All Cells from the popup
selection box.

5 The VisTrails Builder

The Builder is used to create or modify VisTrails. The left side of the Builder
is where you can view a VisTrail as a history tree of visualizations. The right
side is where you find the building blocks to create and modify a visualization
in a VisTrail.

A blank VisTrails Builder Window.

5.1 Resizing the Builder

You can resize the Builder window in the same way as the Spreadsheet by
selecting and moving a window edge or corner. You can also move the divider
between the left and right panels of Builder by dragging the dividing bar left
or right.

6



5.2 Loading a VisTrail Into the Builder

In the Builder, select File/Open Vistrail from the menubar. Browse to the
VisTrailsData directory located inside the VisTrails directory.

Select VTK BOOK 3RD P189.XML from the VisTrailsData directory
and click the Open button. This will create a new tab on the left side of the
Builder. To see the VisTrail, click on the tab labeled VTK BOOK 3RD P189.XML.
You will see a VisTrail history tree with several ovals, the middle one labeled
First.

A VisTrail Loaded into the Builder Window.

5.3 Viewing a VisTrail in the Builder

The view of the VisTrail can be changed with the following mouse events.

Operation Windows Linux Mac
Pan Middle Button Middle Button shift + Button

Zoom Right Button Right Button command + Button
The Builder Mouse Events

7



5.4 Controlling Visualizations in the Spreadsheet

Before sending a visualization from the Builder to the Spreadsheet, it is
recommended you select the cell or cells in the Spreadsheet where you want
the data to appear.

In the Builder, select the visualization labeled First. You will notice that
the oval becomes highlighted and is now ready to be sent to the Spreadsheet.

Above the VTK BOOK 3RD P189.XML tab is a button labeled Send
to Spreadsheet. Clicking this button sends the selected visualization to the
Spreadsheet. Alternatively, dragging the version to the desired spreadsheet
cell functions similarly to selecting a cell and then pressing the Send to
Spreadsheet button.

The Spreadsheet containing the last two versions in the history placed by dragging the
versions to the spreadsheet cells.

By manipulating the view in the Spreadsheet you will notice the data is
a series of ovoid shapes.

8



5.5 Expanding and Collapsing the Version Tree

By default the Builder does not show the entire VisTrail. To see all the
modules in the VisTrail, select View/View Complete Version Tree from the
menubar. When this is checked, the entire VisTrail is shown in the left
panel. When it is unchecked, only those visualizations with names are shown.
Selecting View Complete Version Tree again shows the smaller version of the
VisTrail.

5.6 VisTrail Module Components

When you selected the First module and sent it to the Spreadsheet, the
Builder created another tab VTK BOOK 3RD P189.XML First. If you
dont see the new tab you may need to use the tab shift buttons to access the
new tab.

The tabs illustrated above control the view displayed in the Builder Window.

When you select this visualization definition tab, the left panel will display
the visualization pipeline used to create the data seen in the Spreadsheet.

Viewing manipulation of the visualization pipeline is done in the same
manner as the VisTrail history.

9



The pipeline view of the version marked Almost There.

To select a module in the visualization, left click on it (Mouse Button on
Mac). When a module is selected, it becomes highlighted and its parameters
are shown in the right panel.

Repositioning a selected module is done by holding down the left mouse
button (Mouse Button on Mac) and dragging it to the desired location.

6 VisTrails Modules

To change the parameters of a module, select a text edit box in the right panel
and type in a value. The labels to the left of each text edit box indicate the
parameter input type (double number with a decimal point or int whole
number) and the name of the parameter.

After typing in new values for the parameters, you can choose to update
the VisTrail, or update it and send it to the Spreadsheet. When a module is
changed, a new instance of the visualization with the changed parameters is
added to the VisTrail.

To see this, change one of the parameters for the vtkQuadric compo-
nent (as selected above) and click on the Update button. Now go back to the
VTK BOOK 2RD P189.XML tab panel and turn on the View Complete Ver-
sion Tree. You will see two branches from the visualization label First. The

10



longer branch is the original VisTrail, the shorter branch is the visualization
you just created by changing the parameter and updating the VisTrail.

The Version Tree after a change takes place to a non-leaf module.

To see what effect the parameter changes have on the data, click on the
Update and Send button. Then check the Spreadsheet to view the modified
data. Because of this version branching mechanism, all changes made to any
version in the version tree are monotonic. This monotonicity is important
when making changes to large projects collaborated on by multiple people.

6.1 Using the VisTrails Version Tree

As you make changes to the modules of a visualization, the instances are
automatically added to the VisTrail. This allows you to go back to a previous
version (higher up in the tree), and use a different set of parameters to modify
the data without losing any of the changes you have already made.

To make a visualization you like easily accessible, you can assign it a
name. This makes the visualization visible in the collapsed form of the
version tree.

Select the visualization you want in the extended version tree (the module
should be highlighted). In the right panel at the top, there is a text edit box

11



with the label Visualization Name. Type in a name for the module and select
the Change button to the right. This will place that name in the selected
visualization in the version tree.

Now collapse the version tree. The new module is visible along with the
original First module.

6.2 Working With Modules

In the visualization module panel, you notice that the modules are connected
with lines. This shows the data flow through the modules. Modules can be
connected or disconnected, and added or deleted from a visualization.

To see how this works, we will change the original data from the vtkQuadric
module to a vtkCylinder module.

In the right panel, there are two tabs, one labeled Module Methods and
the other labeled VTK Classes. Module Methods is where you can change the
parameters of the module. The VTK Classes panel contains modules that
can be added to your visualization. In our VTK BOOK 3RD P189.XML ex-
ample, everything comes from the VTK Classes. However, data from external
sources can also be used.

6.3 Creating a New Module

Select the VTK Classes tab. Click on the plus sign (+) to the left of vtkObject
to expand the tree.

12



The expanded tree in the Class Viewer of the Builder Window.

Use the scroll bar on the right of the VTK Classes tab to scroll down
to vtkImplicitFunction. Expand that by clicking on the plus (+) to the left.
The third item down is called vtkCylinder. An alternate method for finding
the class is to use the Search box at the top of the window by typing the
class name directly into the text box.

Left click (Mouse Button on Mac) on the word vtkCylinder and continue
to hold down the mouse button. vtkCylinder becomes highlighted. With the
mouse button still held down, drag the cursor over to the visualization panel
on the left and release the mouse button. A new module, vtkCylinder, is
added to the visualization panel.

13



Dragging and dropping a class from the class viewer adds the vtkCylinder module to the
dataflow.

6.4 Creating a Dataflow From Modules

To change the data source from vtkQuadric to vtkCylinder, you need replace
the output of the first with the second. Notice that the line connecting each
of the modules starts and ends in a small box at the top or bottom of the
modules.

To disconnect the vtkQuadric output from vtkSampleFunction, place the
cursor over the small box at either end of the connection line. Click and hold
down the left mouse button (Mouse Button on Mac). Drag the end of the
line away from the module and release the mouse button. The connecting

14



line will disappear.
To connect the vtkCylinder output to the vtkSampleFunction input, place

the cursor over the small box in the lower right corner of the vtkCylinder
module, click and hold down the left mouse button (Mouse Button on Mac).
Drag the cursor away from vtkCylinder and a line will appear. Drag the
end of the line to the left most small input box in the upper left corner of
the vtkSampleFunction module and release the mouse button. The line now
connects vtkCylinder and vtkSampleFunction.

To check that you were successful, click on the Send to Spreadsheet button
at the top of the visualization panel. The data in the cell shows a series of
cylindrical shapes.

The spreadsheet resulting from replacing the vtkQuadric module with a vtkCylinder.
Note: The two cylinders differ only in a parameter change of their radius.

The input ports of the module will only accept connections from correct
output ports. Dropping a connection on a module will cause it to snap to the

15



nearest appropriate port. However, when a module accepts multiple ports
of the same type, care must be take as to how the connection is made. The
easiest way to ensure proper connectivity is to begin the connection at the
module with multiple ports of the same type and drag it to the appropri-
ate endpoint. To determine the exact port to begin at, simply hover the
mouse cursor over the port to query and a small note will be displayed with
information about the port in question.

6.5 Accessing Module Parameters

You will notice that when you select the vtkCylinder component in the vi-
sualization panel on the left, there are no parameters to adjust in the lower
right panel on the right. Only the parameters that have been modified by
the user are displayed to prevent clutter.

To modify a parameter from its default setting, left click (Mouse Button
on Mac) on the word SetRadius and continue to hold down the mouse button.
SetRadius becomes highlighted. With the mouse button still held down,
drag the cursor to the area directly below the Update and Update and Send
buttons. Then release the mouse button. A parameter text edit box is
shown for SetRadius. You can enter a new radius size for the vtkCylinder
component. To see the results of the new radius in the Spreadsheet, press
the Update and Send button.

7 Advanced Features

The above instructions outline the basic functionality and use of VisTrails.
Below, we discuss the advanced features of the system including Parameter
Exploration, Macros, Visual Diffs, and User Tracking.

7.1 Parameter Exploration

Often, an entire space of parameters needs to be visualized in order to fully
explore a dataset. VisTrail’s Parameter Exploration functionality allows easy
and complete exploration of a parameter. To perform an exploration, click
on the Parameter Exploration tab located above the Class/Module Pane in
the Builder. This will open the Parameter Exploration pane. This window
in the builder looks and functions like the Module Methods pane discussed
earlier. However, when a module’s method is dragged to the bottom section
of the pane, additional parameters are availabed. Each method’s parameters
contain a From, To, and Steps field. These fields indicate and control the

16



values defining the parameter space to explore. The data is processed through
the pipeline once for each parameter value defined by the From, To, and Steps
fields. The parameter values are interpolated from From to To generating
Steps values. The Parameter Exploration feature is capable of performing
n-dimensional explorations where each dimension represents a change to a
different parameter in a module.

The Parameter Exploration Pane. Similar to the Module Methods Pane, this panel
allows exploration of a multi-dimensional parameter space.

Typically, the processing of the data results in a visualization. Selecting
a cell in the Spreadsheet indicates the starting position for the resulting

17



images. This active cell, selected as described earlier, acts as cell (0, 0) when
generating the visualizations for a parameter exploration.

By selecting the By Time checkbox, the resulting visualizations generated
by the Parameter Exploration will be composed in time forming an anima-
tion. Once the visualizations are generated, an animation is displayed at the
appropriate cell location(s) and can be controlled by pressing the ctrl key in
the cell you wish to manipulate. The cell that has focus at the time will be
overlayed with additional controls. In addition to the standard animation
controls, Play, Pause, and Restart, VisTrails provides a slider that controls
animation speed.

7.2 Macros

Many times, changes made to a specific version of a pipeline are applicable
to many others. For example, modifications to the camera position and
orientation should be applied not only to the version being changed, but
also to any other version in the history tree containing a vtkCamera module.
Macros are a simple and concise way of making and saving modifications to
a pipeline in such a way that they can be automatically applied to another
version.

To create a Macro, change to the Macro Tab in the same way that the
Parameter Exploration or Class Pane tabs were selected. The Macro Tab is
substantially different from other panes available.

18



The Macro Pane. This view not only allows macros to be recorded, but displays the
Actions they contain.

Macros in VisTrails are best thought of as exactly what they are; a series
of actions performed on a pipeline. These actions can be operations such as
parameter modification of a module to creation and connection (or deletion
and disconnection) of a new or existing module in the pipeline. Thinking of
macros in this way gives VisTrails a powerful new tool that can be applied not
only to network modification, but to the creation of a set of basic processing
pipelines.

To begin recording a macro, open the Macro Pane in the VisTrails Builder
Window and select the Create New Macro button to begin the process of
creating a macro. After naming and describing the new macro, press the
Record Macro button. This will begin recording any actions performed on

19



the pipeline. At this point, all the macro will contain any operations per-
formed on the pipeline being modified. If the pipeline is empty, then any
actions created to build the pipeline will be recorded in the macro. If the
pipeline is already populated with some modules, any changes of parameter
or module creation or deletion operations will be recorded. Once the macro
is finished being added to, simply return to the Macro Pane and press the
Stop Recording button. This will finalize the macro and allow it to be saved
for later use on other history versions or even on new VisTrails!

7.3 Visual Diffs

One of the most important ways to analyze the differences between two files is
by using a Diff. VisTrails provides a Visual Diff System to visually compare
two pipeline versions in a history. To compare two different versions, simply
click and drag one version in the history tree to another. In doing so, a new
Diff Window will appear allowing a fast visual comparison between the two
versions.

The Visual Diff Window. The legend is shown giving clues as to how the modules are
related as well as the window describing the parameterization differences of two modules.

20



A legend is availabed to denote the various colors in the Diff Window.
Darkened modules indicate modules and parameterizations found in both
pipelines being analyzed. Light-colored boxes indicate modules that differ
only in their parameters. Orange boxes denote modules contained in one
pipeline but not in the other.

7.4 User Tracking

Tracking the progression of a VisTrail is often important to analyze the evo-
lution of a data processing pipeline. The most obvious results of VisTrail’s
workflow management system is the coloring of the Version Tree. The time-
line of the pipeline is indicated by the saturation level of each version in the
tree. Pipelines most recently used or changed will appear with a higher sat-
uration level than others. In this way, the workflow of a single user or group
of users can easily and quickly be analyzed. Furthermore, versions created
by other users can be colored differently. This color scheme can be set by the
user, but by default, nodes in the version tree colored blue represent versions
created by the current user while all other versions are colored differently.

21



A large version tree developed by a single user. Nodes with a darker color represent
versions most recently created.

If additional analyzation is required, each version is also tagged with a
specific creation time, user that created it, and can be tagged with text
augmenting the description of the version. These fields are also capable of
being searched and queried using the Search field at the top of the pane.
This search functions in the same way as it does in the Class Pane with a
few small caveats. While searching, the field in which to examine against the
regular expression search term can be explicitly named by preceeding the
search term by the name of the field to search and a colon. E.g. Date: May

22



8 Visualizing Quadrics: A Case Study

In this section we will form a VisTrail based on visualizing a small set of
quadrics. The step-by-step instructions are meant to fully illustrate the mech-
anisms discussed in the previous sections as well as familiarize you with some
of the more advanced functionality offered by the system. In this tutorial,
we will first create a new VisTrail and add modules to it to form a valid
processing pipeline. After completing the pipeline, we will illustrate param-
eter changes and their effects on the version tree. Finally, a pipeline will be
formed allowing us to perform a multi-dimensional parameter exploration.

8.1 Creating a New VisTrail

Upon opening VisTrails, you are presented with an empty spreadsheet and
a blank builder window. To create a new VisTrail to begin the visualization
or data processing task, simply click on File at the top left of the menubar
on the Builder Window. From there, click the menu entry New to create a
new VisTrail. The Builder Window will contain two tabs; the tab <New1>
contains the Version Tree for the pipeline while the other tab is the Pipeline
View for the builder.

8.2 Adding Modules to the Pipeline

At this point, we must begin to add modules to our processing pipeline. To
do this, make sure the VTK Classes tab is active in the rightmost pane of
the Builder Window. Now, we are ready to search for the approprate classes,
or modules, to add to our pipeline. In the Search Field type in vtkQuadric.
You will notice that the vtk classes will be searched and displayed as the
regular expression in the field is processed. Once the vtkQuadric module is
located in the VTK Classes pane, simply click-and-drag it over to the Pipeline
Viewer area. This module generates data in the form of quadric expressions.
However, if a data file was to be processed, the appropriate vtk file reader
can be inserted in its place by searching for it in the same manner described
above. Once the file reader is incorporated in the network, the SetFileName
parameter must be set as described in the Module Parameterization section
below.

To allow the pipeline to function properly, we must add more modules to
it. Add the following modules in the way described above:

• vtkSampleFunction

23



• vtkContourFilter

• vtkPolyDataMapper

• vtkActor

• vtkRenderer

• vtkRenderWindow

After adding these modules, your builder should be similar to the one
shown below.

The modules described above are added to the pipeline view, but remain unconnected.

8.3 Connecting Modules in the Pipeline

Now that we have all the modules necessary to process our data, we must
connect them properly to fully form our processing pipeline. Each module
box has a set of inputs, located in the upper-left hand corner of the box,
and a set of outputs, located in its lower-right hand corner. By connecting
inputs to outputs we will form a valid VTK pipeline to visualize the data

24



being generated by the vtkQuadric module. In order to connect two modules
together, click-and-drag the appropriate output box contained in the module
to the module using it as its input. For example, by clicking and dragging
the output box of the vtkQuadric module to the vtkSampleFunction module,
a connection will be made between the two modules. This connection is
indicated by a solid black line. Now that we have a connection between
the vtkQuadric module and the vtkSampleFunction module, we must finish
connecting our pipeline.

To finish connecting the pipeline add connections between the following
modules:

• vtkSampleFunction → vtkContourFilter

• vtkContourFilter → vtkPolyDataMapper

• vtkPolyDataMapper → vtkActor

• vtkActor → vtkRenderer

• vtkRenderer → vtkRenderWindow

After connecting these modules together, your pipeline should look similar
to the one shown below.

25



The modules described above are connected to each other in the pipeline view.

8.4 Module Parameterization

Now that we have a valid processing pipeline, we must now set a few param-
eters in order to properly visualize the data. Parameters for the pipeline are
set on a per-module basis. So, in order to tune a parameter, select the module
containing the parameter to change by left clicking on it. You will notice it is
highlighted in yellow when it is selected. Now, once the appropriate module
is selected, click on the tab in the rightmost pane labelled Module Methods.
Once the Module Methods pane is active, a list of all methods supported by
this module are displayed. To change a parameter in this module, select the
method governing the parameter to be changed, in this case the Generate
Values method and drag it to the lower section of the pane. This module
should have the parameter of type int set to the value 5, the first parameter
of type double set to 0, and the second to the value 1.2.

We also need to set some other parameters. In the vtkQuadric module,
the SetCoefficients function should have the values 0.5, 1.0, 0.2, 0.0, 0.1, 0.0,
0.0, 0.2, 0.0, 0.0 set. The SetSampleDimensions function in the vtkSample-
Function module should have all three values set to 50.

At this point, your Builder Window should look similar to the one shown
below.

26



One of the modules Module Methods panes after parameters have been set in it.

Now that the modules are connected and have a working set of parame-
ters, the pipeline is ready to be visualized. Pressing the Send to Spreadsheet
button will send the current pipeline with the set parameters to the VisTrails
Spreadsheet. After reviewing the visualization, we should create a Named
Version to capture the changes we have made this far.

8.5 Naming Versions and Saving VisTrails

Before this VisTrail is further altered, we should create a new Named Version
in the history tree to capture the changes we have made to the pipeline. To do
this, simply enter a short descriptive name in the Visualization Name field in
the upper-right corner of the Builder Window. Pressing the Change button
commits this change and creates a new version in the history tree. This can
be seen by switching to the History View by clicking on the appropriate tab
over the Pipeline Builder. The history tree should look something like the
one shown below.

27



The version tree after creating a Named Version.

If you want to save the work done up to this point, simply click on the
File button on the menubar of the Builder Window and select the Save or
Save As option to save the current VisTrail.

8.6 Modifying A Pipeline

VisTrail’s Action-based Provenance management system records all changes
made to a visualization regardless of how minor. This can be seen by per-
forming a single parameter change on our pipeline. A good example of this is
a change to the vtkRenderer module’s SetBackgroundColor method. Set the
background color to white by setting all three of this method’s parameters
to 1.0. Pressing the Send to Spreadsheet results in a visualization equivalent
to the previous image with only the background color changing from black
to white. Create another new Named Version for this visualization as you
did previously. Now, looking at the version history, we can see that another
node has been added indicating that actions were performed to generate a
new, meaningful visualization. Changes can continue in this manner for any
group of changes made to a pipeline including adding modules, deleting mod-
ules (Pressing the Delete key will delete the active module), or changing a
module’s parameters.

28



Now, we want to modify the previous version’s pipeline. Select the first
Named Version we created previously in the History View. You will notice
that active versions in this view will be highlighted in yellow. Switching to
the pipeline builder, we can see that nothing has changed from our original
pipeline, and the background color for the vtkRenderer module remains un-
set. Now, we want to add a bounding box to the visualization. To do this,
we must add the following modules in the same manner discussed previously:

• vtkOutlineFilter

• vtkPolyDataMapper

• vtkProperty

• vtkActor

This modules must be connected as follows:

• vtkSampleFunction → vtkOutlineFilter

• vtkOutlineFilter → vtkPolyDataMapper

• vtkPolyDataMapper → vtkActor

• vtkProperty → vtkActor

• vtkActor → vtkRenderer

At this point, your processing pipeline should look like the one below.

29



The fully connected visualization pipeline for the quadric example.

By creating another Named Version for this altered pipeline, the Version
History viewer displays a branching history. This immediately allows us to
see that this new version we just created came directly from the first pipeline
we created instead of the pipeline generating a white background.

30



The version tree after creating several Named Versions descending from a single parent.

At this point, you should have a history tree containing 4 Named Versions
each capable of producing a visualization. Below is an image of a spreadsheet
containing these four different visualizations. To re-create this, simply drag
each Named Version from the version tree to the appropriate spreadsheet
cell.

31



The spreadsheet containing visualizations of all the Named Versions in our history tree.

9 References and Papers

All papers regarding VisTrails can be found at the VisTrails homepage lo-
cated at: http://www.sci.utah.edu/∼vgc/vistrails/

[3, 6, 1, 2, 4, 5]

References

[1] E. Anderson, S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva,
and H. Vo. Visualization in radiation oncology: Towards replacing the
laboratory notebook. Technical Report UUSCI-2006-017, SCI Institute–
University of Utah, 2006.

[2] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva,
and H. Vo. Vistrails: Enabling interactive multiple-view visualizations.
In IEEE Visualization 2005, pages 135–142, 2005.

[3] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva,
W. Tyler, and H. Vo. Vistrails: A short tutorial.
http://www.sci.utah.edu/ vgc/vistrails/pub/vistrails-tutorial.pdf.

32



[4] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
VisTrails: Visualization meets Data Management. In ACM SIGMOD,
2005. To appear.

[5] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
Managing the evolution of dataflows with vistrails (Extended Abstract). In
IEEE Workshop on Workflow and Data Flow for Scientific Applications
(SciFlow), 2006. To appear.

[6] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
Using provenance to streamline data exploration through visualization.
Technical Report UUSCI-2006-016, SCI Institute–University of Utah,
2006.

33


