Managing Rapidly-Evolving Scientific Workflows

Juliana Freire, Claudio T. Silva, Steven P. Callahan,
Emanuele Santos, Carlos E. Scheidegger, and Huy T. Vo

University of Utah

Abstract. We give an overview of VisTrails, a system that provides
an infrastructure for systematically capturing detailed provenance and
streamlining the data exploration process. A key feature that sets Vis-
Trails apart from previous visualization and scientific workflow systems
is a novel action-based mechanism that uniformly captures provenance
for data products and workflows used to generate these products. This
mechanism not only ensures reproducibility of results, but it also sim-
plifies data exploration by allowing scientists to easily navigate through
the space of workflows and parameter settings for an exploration task.

1 Introduction

Workflow systems have been traditionally used to automate repetitive tasks and
to ensure reproducibility of results [1, 6,9, 10]. However, for applications that are
exploratory in nature, and in which large parameter spaces need to be investi-
gated, a large number of related workflows must be created. Data exploration
and visualization, for example, require scientists to assemble complex workflows
that consist of dataset selection, and specification of series of algorithms and
visualization techniques to transform, analyze and visualize the data. The work-
flow specification is then adjusted in an iterative process, as the scientist gen-
erates, explores and evaluate hypotheses about the data under study. Often,
insight comes from comparing multiple data products. For example, by applying
a given visualization process to multiple datasets; by varying the values of sim-
ulation parameters; or by applying different variations of a process (e.g., which
use different visualization algorithms) to a dataset. This places the burden on
the scientist to first generate a data product and then to remember the input
data sets, parameter values, and the exact workflow configuration that led to
that data product. As a result, much time is spent manually managing these
rapidly-evolving workflows, their relationships and associated data.

Consider the problem of radiation treatment planning. Whereas a scanner
can create a new dataset in minutes, using advanced dataflow-based visualization
tools such as SCIRun [10], it takes from several hours to days to create appro-
priate visualizations. Fig. 1 shows a series of visualizations generated from a CT
scan of a torso—each visualization is created by a different dataflow. During the
exploratory process, a visualization expert needs to manually record information
about how the dataflows evolve. Often, this is achieved through a combination
of written notes and file-naming conventions. For planning the treatment of a
single patient, it is not uncommon that a few hundred files are created to store

3o SN

Coronal View

Fig. 1. Series of images generated from an CT scan for planning the radiation treatment
of a lung-cancer patient.

dataflow instances and their associated images [2]. To help the radiation oncolo-
gists understand the resulting images and ascertain their accuracy, a detailed log
of the exact process used to create the images is necessary—this often requires
many pages of notes detailing the process.

At the University of Utah, we have been developing VisTrails, a system whose
goal is to simplify and streamline the process of scientific data exploration. Vis-
Trails provides an infrastructure which can be combined with and enhance ex-
isting visualization and workflow systems. A novel feature of VisTrails is an
action-based mechanism which uniformly captures provenance information for
both data products and workflows used to generate these products. As shown in
Fig. 2, the action-based provenance is stored as a rooted tree, where each node
corresponds to a version of a workflow, and edges between nodes correspond
to the action applied to create one from the other. This tree reflects the pro-
cess followed by the visualization expert to construct the necessary images, and
concisely represents all the workflow versions explored. Although the issue of
provenance in the context of scientific workflows has received substantial atten-
tion recently, most works focus on data provenance, i.e., maintaining information
of how a given data product is generated [6, 7, 11]. To the best of our knowledge,
VisTrails is the first system to provide support for the systematic tracking of
workflow evolution.

By maintaining detailed provenance of the exploration process, VisTrails
not only ensures reproducibility, but it also allows scientists to easily navi-
gate through the space of workflows and parameter settings used in a given
exploration task. In particular, this gives them the ability to return to previ-
ous versions of a workflow and compare their results. Powerful operations are
also possible through direct manipulation of the version tree. These operations,
combined with an intuitive interface for comparing the results of different work-

@ VisTrails - Vistrail Builder M=)

File Wiew Help

[Send to Spreadshest Wisuslization Name: baselmagel

lung.xml - baselmagel lung.xml

_ Search:

User
Date:

Y
Notes

A very good transfer function has been found to

A= W highlight not only the lesion in the right lung, but also the |
suntounding soft tissues. 2 cutting planes are in place to |
Splonnap remove the extranenus parts of the dataset (the scanner |
& % couch) and to allow access to the interior of the chest
Sae
Qo\ormd opaalty
7 = B

cavity.
= Rl ke

£y ==] iy
A e .
o
Torturs i Sading
e—
5 %

LN -1 3
(j};nTn_\-m lllxd\ngs;pls;@;_ b

goed franitring)

=)
OO

Al & A,

Z,
= Sl G
I T
ST
s

Geremal van >

Fig. 2. A snapshot of the VisTrails provenance management interface. Each node in
this vistrail version tree represents a workflow version. The nodes highlighted in the tree
correspond to the images shown in Fig. 1. This tree captures all the steps followed by
a visualization expert to derive the images needed for the radiation treatment planning
of a patient.

flows, greatly simplify the scientific discovery process. These include the ability
to re-use workflows and workflow fragments through a macro feature; to explore
a multi-dimensional slice of the parameter space of a workflow and generate a
large number of data products through bulk-updates; to analyze (and visual-
ize) the differences between two workflows; and to support collaborative data
exploration in a distributed and disconnected fashion.

Outline. In this paper, we give an overview of VisTrails. The architecture of
the system is described in Section 2. In Section 3, we present the action-based
provenance mechanism and discuss some of the data exploration operations it
enables. We review the related work and conclude in Section 4, where we also
outline directions for future work.

2 VisTrails: System Overview
With VisTrails, we aim to give scientists a dramatically improved and simplified
process to analyze and visualize large ensembles of simulations and observed
phenomena. Although the initial motivation for developing VisTrails was to pro-
vide support for data exploration through visualization, the system is extensible
and provides infrastructure for managing metadata and processes involved in
the creation of data products in general, not just visualizations. The high-level
architecture of the system is shown in Fig. 3. Below we briefly describe its key
components. For more details, the reader is referred to [3, 5].

Users create and edit workflows using
the Vistrail Builder, which provides a visual P
programming interface similar to those of
visualization and workflow systems [9, 10]. =
The workflow specifications are saved in the
Vistrail Repository. Users may interact with —— o 4
[Vlsuallzatlon} [Vistrail } Vistrail }

Visualization

o

saved workflows by invoking them through Spreadsheet Builder Server
the Vistrail Server (e.g., through a Web- t f f
based interface) or by importing them into

the Visualization Spreadsheet. Each cell in Repository

the spreadsheet represents a view that cor-
responds to a workflow instance; users can
modify the parameters of a workflow as well as synchronize parameters across
different cells. The spreadsheet layout makes efficient use of screen space, and
the row/column groupings can conceptually help the user explore the workflow
parameter space.

Workflow execution is controlled by the Vistrail Cache Manager, which keeps
track of invoked operations and their respective parameters. Only new combina-
tions of operations and parameters are requested from the Vistrail Player, which
executes the operations by invoking the appropriate functions from the Visual-
ization and Script APIs. The Player also interacts with the Optimizer module,
which analyzes and optimizes the workflow specifications.

Fig. 3. VisTrails Architecture.

3 Action-Based Provenance and Data Exploration

Vistrail: An Evolving Workflow. To provide full provenance of the explo-
ration process, we introduce the notion of a vistrail. A wvistrail captures the evo-
lution of a workflow—all the trial-and-error steps followed to construct a set of
data products. A vistrail consists of a collection of workflows—several versions
of a workflow and its instances. It allows scientists to explore data products by
returning to and modifying previous versions of a workflow.

A vistrail is depicted in Fig. 2. Instead of storing a set of related workflows,
we store the operations (actions) that are applied to the workflows. A vistrail is
essentially a tree in which each node corresponds to a version of a workflow, and
the edge between nodes P and C, where P is the parent of C, corresponds to one
or more actions applied to P to obtain C. More formally, let W F be the domain
of all possible workflow instances, where () € W F is a special empty workflow.

e 8 tPiopaD Selcale

Steps: 4 [By Time
Start End

flaat 1 1

float |1 1

float |1.25 358

[] Start from a selected call

Bulk Change

Fig. 4. Results of a bulk update exploration voxel scaling in a single dimension shown
in the VisTrails Spreadsheet.

Also, let x : WF — WF be a function that transforms a workflow instance into
another, and W be the set of all such functions. A vistrail node corresponds to
a workflow f constructed by a sequence of actions x;, where each x; € W:

f=wzp,0xp_10...00100

Workflow Change Actions. In the current VisTrails prototype, we imple-
mented a set of operators that correspond to common actions applied to work-
flows in the exploratory process, including: adding or replacing a module, delet-
ing a module, adding a connection between modules, and setting parameter
values. We also have an import operator that adds a workflow to an empty
vistrail—this is useful for starting a new exploration process. Internally, the vis-
trail tree is represented in XML. This allows users to query the workflows and
the provenance information, as well as share information easily. For a description
of the vistrail schema, see [5].

The action-oriented provenance mechanism captures important information
about the exploration process through the very simple process of tracking (and
recording) the steps followed by a user. Although quite simple and intuitive, this
mechanism has important benefits. Notably, it uniformly captures both changes
to workflow instances (i.e., parameter value changes) and to workflow specifica-
tions (i.e., changes to modules and connections). In addition, it enables several
operations that greatly simplify the data exploration process. We outline some
of these operations below, for more details, see [5].

Scalable Derivation of Data Products. The action-oriented model leads
to a very natural means to script workflows. For example, to execute a given
workflow f over a set of n different parameter values, one just needs to apply a
sequence of set parameter actions to f:

(set Parameter(idn, valuey) o . .. (setParameter(idl,valuel) o f)...)

Or to compare the results of different data transformation algorithms represented
by modules Ry and Rs, a bulk update can be applied that replaces all occurrences
of Ry with Ry modules. Fig. 4 shows the VisTrails bulk-change interface. For the
workflow corresponding to the node labeled baseImagel in the tree of Fig. 2,
the user instructs the system to create visualizations varying the voxel size from

[lvisual Diff - color and opacity vs. good transferfunc

o0
vtkOpenGLVolumeTextureMapper3D

O
/ @ Parameter Changes - vikPiecewise Function ox
A
Jml

wtkStructuredPointsReader

=
A vtkVolumeRayCastCompositeFunction

0 wtkColorTransferFunction

I

{Side by Side /" Fitered /Full\

color and opacity | good transferfunc ‘

AddPoINt(0.0,0.0) AddPoint(-1431.0,0.834)
AddPoINt(104.0,0.515) AddPoINt(-1439.0.0.0)
AddPoINt(109.0,0.964) AddPoint(-161.0,0.855)
AddPoint(117.0,0.855) AddPoint(-293 0,0 965)
AddPoint(127.0,0.0) AddPoINt(-379.0,0516)
AddPoint(166.0.0.0) AddPoint(-5.0.0.0)
AddPoint(167.0,1.0) AddPOINt(-745.0,0516)
AddPoint(255.0,1.0) AddPoint(-854.0,0.934)
AddPoINt(36.0,0.0) AddPoINt(0.0.0.0)
AddPoINt(37.0,0.934) AddPoint(1990.0,1.0)
AddPoiNt(74 0,0 934) AddPoint(610.0.0.0)
AddPoINt(80.0,0 515) AddPoint(510.0.1.0)

D)
VtkVolumeProperty

@ Visual Diff Legend ox
[T Version 'colorand opacty’

[version ‘good transfertunc’

[shared

[] Parameter Changes

EEEEEEFEERE
EE

N}

Fig. 5. Visual diff interface. This figure shows the differences between the nodes (work-
flows) labeled color and opacity and good transferfunc.

1.25 to 3.5 in four steps. VisTrails executes the workflow using the interpolated
values and automatically displays the four images in the spreadsheet, where the
specialist can easily select the most accurate one. Since some scanners use differ-
ent resolution in different axes, correcting non-uniform resolution is a common
task while dealing with CT scans. To perform this task using SCIRun [10], the
visualization expert must go through the lengthy process of manually setting
these parameters, one by one through a GUI and saving the resulting images
into files.

Re-Use of Stored Provenance. To construct complex scientific workflows,
users must have deep knowledge of underlying tools and libraries. Even for ex-
perts, creating these workflows can be time-consuming. Thus, mechanisms that
allow the re-use of workflows or workflow fragments are key to streamlining the
exploratory process. In VisTrails, users can create macros by selecting a sequence
of actions in the version tree, or by selecting a workflow fragment. Internally, a
macro m is represented as a sequence of operations x; ox;_q0...0x. To apply
m to a workflow f in the version tree, VisTrails simply composes m with the
actions of f.

Interacting with Provenance Information. At any point in time, the sci-
entist can choose to view the entire history of changes, or only the workflows
important enough to be given a name, i.e., the tagged nodes in the version tree.
The version tree in Fig. 2 represents the history of the changes applied to a
workflow to generate the visualizations shown in Fig. 1. Note that in this figure,
only tagged nodes are displayed. Edges that hide untagged nodes are marked
with three short perpendicular lines. In addition, since the tree structure only
shows the dependencies among the workflow versions, different saturation levels
are used to indicate the chronological order in which the versions were created—
darker nodes are more recent.

To better understand the exploratory process, users often need to compare
different workflows. The difference between two nodes in the vistrail tree can be
derived by computing the difference between the sequences of actions associated
with the nodes. The visual diff interface of VisTrails is illustrated in Fig. 5.
Collaborative Data Exploration. Data exploration is a complex process that
requires close collaboration among domain scientists, computer scientists and
visualization experts. The ability to collaboratively explore data is key to the
scientific discovery process. A distinctive feature of the VisTrails provenance
mechanism is monotonicity: nodes in the vistrail version tree are never deleted or
modified—once pipeline versions are created, they never change. Having mono-
tonicity makes it possible to adopt a collaboration infrastructure similar to mod-
ern version control systems (e.g., GNU Arch, BitKeeper, DARCS). A user’s local
copy can act as a repository for other users. This enables scientists to work of-
fline, and only commit changes they perceive as relevant. Scientists can also
exchange patches and synchronize their vistrails. The vistrail synchronization
algorithm is described in [5].

4 Related Work and Discussion

In this paper, we gave an overview of VisTrails, a system that provides a novel
infrastructure for tracking provenance of both data products and workflow evo-
lution. VisTrails is not intended to replace visualization and scientific workflow
systems, instead it can be combined with and enhance these systems.

Although provenance in the context of scientific workflows has received sub-
stantial attention recently, most works focus on data provenance. To the best
of our knowledge, VisTrails is the first system to provide support for tracking
workflow evolution. Provenance has also been investigated in other areas. In
their pioneering work on the GRASPARC system, Broadlie et al. [4] proposed
the use of a history mechanism that allowed scientists to steer an ongoing simula-
tion by backtracking a few steps, changing parameters, and resuming execution.
However, their focus was on steering time-dependent simulations, not on data
exploration. Kreuseleret al. [8] proposed a history mechanism for exploratory
data mining. They used a tree-structure, similar to a vistrail, to represent the
change history, and described how undo and redo operations could be calculated
in this tree structure. Whereas their theoretical framework attempted to capture
the complete state of a software system, VisTrails uses a simpler model and only
tracks the evolution of workflows. This allows for the much simpler action-based
provenance mechanism described above.

Maintaining detailed provenance has many benefits, but it also presents many
challenges. A potential problem is information overflow—too much data can ac-
tually confuse users. An important challenge we need to address is how to design
intuitive interfaces and provide adequate functionality to help the user interact
with and use the provenance information productively. We are currently inves-
tigating interfaces and languages that facilitate the querying and exploration of
the provenance data as well as efficient storage strategies.

A big barrier to a more wide-spread use of scientific workflow systems has
been complexity. Although most systems provide visual programming interfaces,

assembling workflows requires deep knowledge of the underlying tools and li-
braries. This often makes it hard for domain scientists to create workflows and
steer the data exploration process. An important goal of our research is to elim-
inate, or at least reduce this barrier. VisTrails already presents a significant step
towards this goal. The existing facilities for scalable parameter exploration and
workflow re-use give domain scientists a high degree of flexibility to steer their
own investigations. Since VisTrails records all user interactions, an interesting
direction we intend to pursue is to try to identify exploration patterns in the
version tree and use this knowledge to help users create new workflows and/or
solve similar problems.

Acknowledgments. We thank Dr. George Chen (MGH/Harvard University)
for providing us the lung datasets, and Erik Anderson for creating the lung
visualizations. This work is partially supported by the NSF (under grants IIS-
0513692, CCF-0401498, EIA-0323604, CNS-0514485, 11S-0534628, CNS-0528201,
OISE-0405402), the DOE, and an IBM Faculty Award. E. Santos is partially
supported by a CAPES/Fulbright fellowship.

References
1. G. Alonso and C. Mohan. Workflow management: The next generation of dis-

tributed processing tools. In S. Jajodia and L. Kerschberg, editors, Advanced
Transaction Models and Architectures, chapter 2. Kluwer, 1997.

2. E. Anderson, S. Callahan, G. Chen, J. Freire, E. Santos, C. Scheidegger, C. Silva,
and H. Vo. Visualization in radiation oncology: Towards replacing the laboratory
notebook. Technical Report UUSCI-2006-017, SCI Institute—Univ. of Utah, 2006.

3. L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. Vo.
VisTrails: Enabling Interactive Multiple-View Visualizations. In IEEE Visualiza-
tion 2005, pages 135142, 2005.

4. K. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay. GRASPARC:
a problem solving environment integrating computation and visualization. In I[EEFE
Visualization ’93, pages 102-109, 1993.

5. S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. Using
provenance to streamline data exploration through visualization. Technical Report
UUSCI-2006-016, SCI Institute-Univ. of Utah, 2006.

6. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for
representing, querying and automating data derivation. In Statistical and Scientific
Database Management (SSDBM), pages 37-46, 2002.

7. P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and L. Moreau. Recording
and using provenance in a protein compressibility experiment. In Proceedings of the
14th IEEE International Symposium on High Performance Distributed Computing
(HPDC"05), July 2005.

8. M. Kreuseler, T. Nocke, and H. Schumann. A history mechanism for visual data
mining. In IEEE Symposium on Information Visualization, pages 49-56, 2004.

9. B. Ludéscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee,
J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice & Experience, 2005.

10. S. G. Parker and C. R. Johnson. SCIRun: a scientific programming environment
for computational steering. In Supercomputing, 1995.

11. Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Record, 34(3):31-36, 2005.

