
The Visualization Pipeline

CS9223 Data Visualization
NYU-Poly

Outline

• Procedural vs. Dataflow Programming

• Dataflow for Visualization Pipeline

• VTK Pipeline

• Quick guide on CMake/VTK and VisTrails

Programming Paradigms

• Imperative/Structured

• Procedural

• Object-oriented

• Declarative

• Dataflow

• Functional

• ... many many more (check out Wikipedia)

Programming Paradigms

• Imperative/Structured

• Procedural

• Object-oriented

• Declarative

• Dataflow

• Functional

• ... many many more (check out Wikipedia)

Explicitly describe
every step of execution,

focus on the computation.

Programming Paradigms

• Imperative/Structured

• Procedural

• Object-oriented

• Declarative

• Dataflow

• Functional

• ... many many more (check out Wikipedia)

Focus on how
computations are

connected, graphical
specification of procedures.

Example

Given a program implementation:
int A() {...}
int B() {...}
int C(int,int) {...}

Example

Procedural programming:
outA = A();
outB = B();
outC = C(outA,outB);

Given a program implementation:
int A() {...}
int B() {...}
int C(int,int) {...}

Example

Given a program implementation:
int A() {...}
int B() {...}
int C(int,int) {...}

The order of execution: A➔B➔C

Procedural programming:
outA = A();
outB = B();
outC = C(outA,outB);

Example

Procedural programming:
outB = B();
outA = A();
outC = C(outA,outB);

Given a program implementation:
int A() {...}
int B() {...}
int C(int,int) {...}

The order of execution: B➔A➔C

Example

Dataflow Programming:

Given a program implementation:
int A() {...}
int B() {...}
int C(int,int) {...}

A B

C

Example

Dataflow Programming:

Given a program implementation:
int A() {...}
int B() {...}
int C(int,int) {...}

A B

C

The order of execution: (A⋃B)➔C

Procedural vs. Dataflow
Programming

• Procedural Programming:

• The control flow has to be dictated

• Sequential execution

• Difficult to manage in large execution networks

• Dataflow:

• The control flow is specified through data dependency

• Freedom in execution order ➔ concurrency

• More flexible and easier for use

Dataflow Construction

• A directed graph

• node (module) = computation

• edge (connection) = data stream

knows how to compute outputs
given a set of inputs and parameters

maintains data states and specifications

Dataflow Construction

• A directed graph

• node (module) = computation

• edge (connection) = data stream

knows how to compute outputs
given a set of inputs and parameters

maintains data states and specifications

What controls the execution?

Dataflow Construction

• A directed graph

• node (module) = computation

• edge (connection) = data stream

• executive = coordinate module execution

knows how to compute outputs
given a set of inputs and parameters

maintains data states and specifications

E

Executive Scope

E E

E

E E

E

Centralized
flexible scheduling

Distributed
good for scalability

Execution Policy

Data Request

New Event

Pull (demand-driven) Push (event-driven)
• Policy for communicating between modules

minimize computation minimize coordination

Types of Parallelism

A

B

C

D

Piece #2

Piece #1

A

B

Merge

A

B

A

B

Streamable/Separable Data Structure

Concurrency Execution

Task Pipeline Data

Dataflow Visualization Systems

AVS!

DeVIDE!

VisTrails!

System ParallelismParallelism Policy Scope

VTK Pull Dist.

ParaView DataData Pull Dist.

Visit Data Task Pull Dist.

DeVIDE Pull/Push Cent.

SCIRun TaskTask Push Cent.

VisTrails Pull Cent.

The Visualization Pipeline

Source

Filter

Map

Render

The Visualization Pipeline

Source

Filter

Map

Render

Generates data

The Visualization Pipeline

Source

Filter

Map

Render

Prepares data

The Visualization Pipeline

Source

Filter

Map

Render

Construct graphics primitives

The Visualization Pipeline

Source

Filter

Map

Render
Create actual images

The Visualization Pipeline

Source

Filter

Map

Render

Volume File Reader Quadratic Function

Sampling Data Over
Structured Grids

Volume Slicer
Iso-surface
Generator

Slice
Composition

Surface
Rendering

Final Visualization

The Visualization Toolkit (VTK)

• One of the most popular visualization packages

• Provide pieces to build complex applications

• Open-source, considerably cross-platform

• Written in C++ but has Python/Java/Tcl wrappings

• Advanced visualization applications based on VTK:
ParaView, VisIt, 3DSlicer, MayaVi, DeVIDE

VTK Pipeline

Source

Filter

Map

Render

Visualization

Graphics

actual
dataflow
network

VTK Visualization Pipeline

• A directed graph

• node (module) = Algorithm Object

• edge (connection) = Data Object

• executive = Executive Object

knows how to compute outputs
given a set of inputs and parameters

maintains data states and specifications

E

VTK Algorithm Object
vtkAlgorithm

• Operates on data objects to produce new data
objects

• Base classes for all sources, filters and some
intermediate mappers

• Maintain module specifications, e.g. the number of
input and output ports

• Could be zero (for readers and writers)

VTK Data Object
vtkDataObject

• General representation of visualization data

• Holding metadata to support multi-pass execution

• Base classes for all data types

VTK Executive Object
vtkExecutive

• Distributed executive

• Each executive controls exactly one algorithm

• Holding metadata to support demand-driven
execution, e.g. update timestamp

• Only knows immediate executives that it connects
to

Using vtkAlgorithm vs.
vtkExecutive

• Can be used interchangeably through the API since
they have one-to-one mapping

• Underneath VTK directs the correct calls to
either vtkAlgorithm or vtkExecutive

• Chain SetInputConnection() and GetOutputPort()
calls to construct VTK dataflow networks

VTK Graphics Pipeline

• Mapper: produce geometries, interfacing between the
visualization and graphics phase of VTK

• Properties: rendering properties, e.g. color, material, etc.

• Actor: scene objects (geometry+properties)

• Renderer: specify the rendering logic with lights, camera, etc.

• Render Window and Interactor: manages windows and user
interactions

VTK Pipeline Execution

• Pull/Demand-Driven

• Triggered by

• mappers from the graphics phase requested
geometry from the visualization dataflow

• explicitly called to Update()

• Each update will propagate up to sources

• Not thread-safe

Example

vtkUnstructuredGridReader

vtkContourFilter

vtkPolyDataMapper

vtkActor

vtkRenderer

vtkRenderWindow

VisTrails

• Visual programming interface

• Simplify the pipeline creation process

• Capture detailed provenance

• Provide comparative visualization through the
spreadsheet

• Python-based

• Seamlessly integrate with many libraries

VisTrails Visualization Pipeline

• A directed graph

• node (module) = Computation Object

• edge (connection) = Dependency

• executive = Interpreter

knows how to compute outputs
given a set of inputs and parameters

maintains data states and specifications

E

VisTrails Computation Object

• A python class with a compute() method

• VTK is wrapped by calling Update() method inside
compute()

• Data stays at the source module (the module that
generates it)

• Maintain metadata such as the number of input/
output ports and annotations

VisTrails Connection Object

• Does not hold actual data

• Only keeps the information on the two ports that it
connects to ensure correct execution order

VisTrails Interpreter

• Centralized executive

• Ensure the whole pipeline execution from sinks to
sources (a BFS from sinks)

• Maintain output caches to speed up computation

Example

Example

Example

Quick Guide on
Visualization Tools

• VTK with C++ and CMake

• Python VTK, scripting programming

• VisTrails, visual programming

Build VTK from Source

• Required for Python/Java wrapping and for Linux/
Mac distribution

• Recommended the trunk for development

• Cross-platform compilation using CMake

Exercise 1

• Compile VTK with Python support

• Testing: run Examples/VisualizationAlgorithms/
Python/VisQuad.py

CMake

• Open-source, cross-platform Make

• Out-of-source build

• Natively support linking with VTK, i.e.
find_package(VTK)

• Tutorial available at www.cmake.org

http://www.cmake.org
http://www.cmake.org

Exercise 2

• Build the same program in Exercise 1 but using C++
and CMake

VisTrails

• Binaries and user guides are available at
www.vistrails.org

http://www.vistrails.org
http://www.vistrails.org

Exercise 3

• Build the same pipeline in VisTrails

• Perform parameter exploration

