2D Scalar Visualization

Thanks to Drs. Rheingans and Hansen for material for these slides

Color Mapping

- Display scalar value through a **color map** or a **color scale**
 - Map interval on the real line to a path through color space $f: R \rightarrow \{RGB, HSV\}$
- (demo: ozone.vt, mpl jet)

- Vary a single color model component
 - Remember color science: relative brightness vs absolute brightness
 - Use brightness for qualitative assessments
 - (demo: ozone.vt, Red-White, making it grey)

• Vary a single color model component

- Remember color science
 - Use hue for quantitative assessments
- (demo: ozone.py, Hue wrap, hue no wrap)

Redundant Cues

- Fault tolerance: provide same info in multiple ways
- Easy with color scales
- (demo: ozone.vt, Redundant *)

- If there is a **neutral**, zero-like scalar in the field, use a **double-ended** scale
 - Alternatively, if you want to emphasize both extremes.
- (demo: ozone.py, Double-Ended)

HOKKALDO

Some Standard Color Scales

- Gray
- Linearized Gray
- Rainbow
- Magenta
- Heated
- Optimal

- Linearized Optimal
- Blue-Cyan
- Blue-Yellow

Gray, Linearized Gray

• Linearized Gray

• Are these really different?

Gray vs. Linear Gray

Gray Linearized Gray

More color scales..

Remember Cultural Issues

- Sometimes colors have connotations
- A colorbar might not be enough help, people love to jump to conclusions
 - Red "bad", green "good" not universal, so it's even worse!
 - If you can't help it, at least be aware

Bivariate color scales

- We intuitively perceive colors along three axes
 - use that to display more information in a single picture
 - Good: less waste
 - Bad: less redundancy, interference

Hue vs Brightness

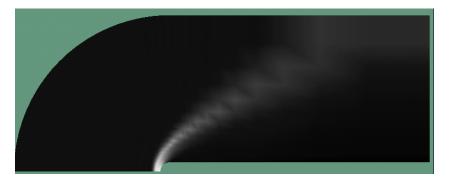
 Changes of hue imply change in brightness

Hue vs Brightness

• Isoluminant colormaps

• (watch out for gamma!)

How to design colorscales


- **Trumbo's** principles:
 - Ordered values should be represented by ordered colors
 - Significantly different levels should be given significantly different colors
 - Bivariate colormaps should preserve univariate information
 - To show correlation, use "above diagonal", "on diagonal", "below diagonal"

Trumbo's Principle #1

Bad

Trumbo's Principle #2

Better

Trumbo's Principles #3, 4

Tufte '83, pg. 153

Heightfields

- We use height in 1D plots, let's use it in 2D plots
 - Direct intuition with topography
 - (demo: elevation.vt)

Contour Lines

- Draw lines of constant value
- They bound regions of contiguous values
 - Loops or lines through end of dataset
- Multiple contours
 - Why?
- (demo: elevation.vt, Contours)

Computing Contours

• Simplest case: triangles

- Let's use Rolle's theorem: if along a line [a, b], $sgn(f(a)) \neq sgn(f(b))$ there exists a root of f in [a, b]
- It's enough to know it roughly, since we're sampling the scalar field anyway

Contouring triangles

Only these two cases. Why?

Contouring squares

• (demo, elevation.vt, contours)

Contouring squares

More cases

Resolving the ambiguity

• Goes back to interpolation...

• (demo: asymptotic_decider.vt)

1.0 -

Resolving the ambiguity

• Simple! Compare value with asymptote scalar, and use that