2D Scalar Visualization

Thanks to Drs. Rheingans and Hansen for material for these slides

Color Mapping

- Display scalar value through a color map or a color scale
- Map interval on the real line to a path through color space $f: R \rightarrow\{$ RGB, HSV $\}$
- (demo: ozone.vt, mpl jet)

Basic Strategies

- Vary a single color model component
- Remember color science: relative brightness vs absolute brightness
- Use brightness for qualitative assessments
- (demo: ozone.vt, Red-White, making it grey)

Basic Strategies

- Vary a single color model component
- Remember color science
- Use hue for quantitative assessments
- (demo: ozone.py, Hue wrap, hue no wrap)

Basic Strategies

- Redundant Cues
- Fault tolerance: provide same info in multiple ways
- Easy with color scales
- (demo: ozone.vt, Redundant *)

Basic Strategies

- If there is a neutral, zero-like scalar in the field, use a double-ended scale
- Alternatively, if you want to emphasize both extremes.
- (demo: ozone.py, Double-Ended)

Some Standard Color

Scales

- Gray
- Linearized Gray
- Rainbow
- Magenta
- Heated
- Optimal
- Linearized Optimal
- Blue-Cyan
- Blue-Yellow

Gray, Linearized Gray

- Gray
- Linearized Gray
- Are these really different?

Gray vs. Linear Gray

Gray
Linearized Gray

More color scales..

Magenta

Heated

Rainbow

Blue-Yellow

Blue-Cyan

Optimal

Remember Cultural Issues

- Sometimes colors have connotations
- A colorbar might not be enough help, people love to jump to conclusions
- Red "bad", green "good" not universal, so it's even worse!
- If you can't help it, at least be aware

Bivariate color scales

- We intuitively perceive colors along three axes
- use that to display more information in a single picture
- Good: less waste
- Bad: less redundancy, interference

Hue vs Brightness

- Changes of hue imply change in brightness

Hue vs Brightness

- Isoluminant colormaps
- (watch out for gamma!)

How to design colorscales

- Trumbo's principles:
- Ordered values should be represented by ordered colors
- Significantly different levels should be given significantly different colors
- Bivariate colormaps should preserve univariate information
- To show correlation, use "above diagonal", "on diagonal", "below diagonal"

Trumbo's Principle \#1

Trumbo's Principle \#2

Bad

Better

Trumbo's Principles \#3, 4

Tufte '83, pg. 153

Heightfields

- We use height in 1D plots, let's use it in 2D plots
- Direct intuition with topography
- (demo: elevation.vt)

Contour Lines

- Draw lines of constant value
- They bound regions of contiguous values
- Loops or lines through end of dataset
- Multiple contours
- Why?
- (demo: elevation.vt, Contours)

Computing Contours

- Simplest case: triangles
- Let's use Rolle's theorem: if along a line [a, b], $\operatorname{sgn}(f(a)) \neq \operatorname{sgn}(f(b))$ there exists a root of f in $[a, b]$
- It's enough to know it roughly, since we're sampling the scalar field anyway

Contouring triangles

Only these two cases. Why?

Contouring squares

- (demo, elevation.vt, contours)

Contouring squares

- More cases

Resolving the ambiguity

- Goes back to interpolation...
- (demo: asymptotic_decider.vt)

Resolving the ambiguity

- Simple! Compare value with asymptote scalar, and use that

